The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions

被引:0
|
作者
Qian, Kun [1 ]
Fu, Shiwei [2 ,3 ]
Li, Hongwei [1 ]
Li, Wei Vivian [2 ,3 ,4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan, Peoples R China
[2] Rutgers State Univ, Rutgers Sch Publ Hlth, Dept Biostat & Epidemiol, Piscataway, NJ USA
[3] Univ Calif Riverside, Dept Stat, Riverside, CA USA
[4] Univ Calif Riverside, Dept Stat, 900 Univ Ave,Olmsted Hall 1337, Riverside, CA 92591 USA
基金
美国国家卫生研究院;
关键词
clustering; data integration; non-negative matrix factorization; scRNA-seq;
D O I
10.1089/cmb.2022.0244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Data integration is a critical step in the analysis of multiple single-cell RNA sequencing samples to account for heterogeneity due to both biological and technical variability. scINSIGHT is a new integration method for single-cell gene expression data, and can effectively use the information of biological condition to improve the integration of multiple single-cell samples. scINSIGHT is based on a novel non-negative matrix factorization model that learns common and condition-specific gene modules in samples from different biological or experimental conditions. Using these gene modules, scINSIGHT can further identify cellular identities and active biological processes in different cell types or conditions. Here we introduce the installation and main functionality of the scINSIGHT R package, including how to preprocess the data, apply the scINSIGHT algorithm, and analyze the output.
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 50 条
  • [41] Classification of low quality cells from single-cell RNA-seq data
    Tomislav Ilicic
    Jong Kyoung Kim
    Aleksandra A. Kolodziejczyk
    Frederik Otzen Bagger
    Davis James McCarthy
    John C. Marioni
    Sarah A. Teichmann
    Genome Biology, 17
  • [42] scENT for Revealing Gene Clusters From Single-Cell RNA-Seq Data
    Rao, Fan
    Chen, Minghan
    Yang, Defu
    Morrell, Bess
    Song, Qianqian
    Zhu, Wentao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2266 - 2277
  • [43] Classification of low quality cells from single-cell RNA-seq data
    Ilicic, Tomislav
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Bagger, Frederik Otzen
    McCarthy, Davis James
    Marioni, John C.
    Teichmann, Sarah A.
    GENOME BIOLOGY, 2016, 17
  • [44] Latent periodic process inference from single-cell RNA-seq data
    Shaoheng Liang
    Fang Wang
    Jincheng Han
    Ken Chen
    Nature Communications, 11
  • [45] BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
    Dimitrov, Daniel
    Gu, Quan
    PEERJ, 2020, 8
  • [46] SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data
    Yang, Yuchen
    Huh, Ruth
    Culpepper, Houston W.
    Lin, Yuan
    Love, Michael I.
    Li, Yun
    BIOINFORMATICS, 2019, 35 (08) : 1269 - 1277
  • [47] RNA Velocity: Molecular Kinetics from Single-Cell RNA-Seq
    Svensson, Valentine
    Pachter, Lior
    MOLECULAR CELL, 2018, 72 (01) : 7 - 9
  • [48] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [49] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [50] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029