Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0

被引:56
|
作者
Mawardi, Bahri [1 ]
Hitzer, Eckhard M. S. [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
vector derivative; multivector-valued function; Clifford (geometric) algebra; Clifford Fourier transform; uncertainty principle;
D O I
10.1007/s00006-006-0003-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the basic concept of the vector derivative in geometric algebra is introduced. Second, beginning with the Fourier transform on a scalar function we generalize to a real Fourier transform on Clifford multivector-valued functions (f : R-3 -> Cl-3,Cl-0). Third, we show a set of important properties of the Clifford Fourier transform on Cl-3,Cl-0 such as differentiation properties, and the Plancherel theorem. Finally, we apply the Clifford Fourier transform properties for proving an uncertainty principle for Cl-3,Cl-0 multivector functions.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条