Representation of Crystallographic Subperiodic Groups in Clifford's Geometric Algebra

被引:6
|
作者
Hitzer, Eckhard [1 ]
Ichikawa, Daisuke [2 ]
机构
[1] Int Christian Univ, Dept Mat Sci, Coll Liberal Arts, Tokyo 1818585, Japan
[2] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
Subperiodic groups; Clifford's geometric algebra; versor representation; frieze groups; rod groups; layer groups;
D O I
10.1007/s00006-013-0404-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explains how, following the representation of 3D crystallographic space groups in Clifford's geometric algebra, it is further possible to similarly represent the 162 so called subperiodic groups of crystallography in Clifford's geometric algebra. A new compact geometric algebra group representation symbol is constructed, which allows to read off the complete set of geometric algebra generators. For clarity moreover the chosen generators are stated explicitly. The group symbols are based on the representation of point groups in geometric algebra by versors (Clifford monomials, Lipschitz elements).
引用
收藏
页码:887 / 906
页数:20
相关论文
共 50 条
  • [1] Representation of Crystallographic Subperiodic Groups in Clifford’s Geometric Algebra
    Eckhard Hitzer
    Daisuke Ichikawa
    [J]. Advances in Applied Clifford Algebras, 2013, 23 : 887 - 906
  • [2] Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra
    Hitzer, Eckhard M. S.
    Perwass, Christian
    Ichikawa, Daisuke
    [J]. GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 385 - +
  • [3] Crystallographic space groups in geometric algebra
    Hestenes, David
    Holt, Jeremy W.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)
  • [4] Applications of Clifford's Geometric Algebra
    Hitzer, Eckhard
    Nitta, Tohru
    Kuroe, Yasuaki
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (02) : 377 - 404
  • [5] Applications of Clifford’s Geometric Algebra
    Eckhard Hitzer
    Tohru Nitta
    Yasuaki Kuroe
    [J]. Advances in Applied Clifford Algebras, 2013, 23 : 377 - 404
  • [6] New Applications of Clifford's Geometric Algebra
    Breuils, Stephane
    Tachibana, Kanta
    Hitzer, Eckhard
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [7] New Applications of Clifford’s Geometric Algebra
    Stephane Breuils
    Kanta Tachibana
    Eckhard Hitzer
    [J]. Advances in Applied Clifford Algebras, 2022, 32
  • [8] Calculation of Elements of Spin Groups Using Method of Averaging in Clifford's Geometric Algebra
    Shirokov, Dmitry
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)
  • [9] Calculation of Elements of Spin Groups Using Method of Averaging in Clifford’s Geometric Algebra
    Dmitry Shirokov
    [J]. Advances in Applied Clifford Algebras, 2019, 29
  • [10] Clifford algebras and geometric algebra
    G. Aragón
    J. L. Aragón
    M. A. Rodríguez
    [J]. Advances in Applied Clifford Algebras, 1997, 7 (2) : 91 - 102