Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0

被引:56
|
作者
Mawardi, Bahri [1 ]
Hitzer, Eckhard M. S. [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
vector derivative; multivector-valued function; Clifford (geometric) algebra; Clifford Fourier transform; uncertainty principle;
D O I
10.1007/s00006-006-0003-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the basic concept of the vector derivative in geometric algebra is introduced. Second, beginning with the Fourier transform on a scalar function we generalize to a real Fourier transform on Clifford multivector-valued functions (f : R-3 -> Cl-3,Cl-0). Third, we show a set of important properties of the Clifford Fourier transform on Cl-3,Cl-0 such as differentiation properties, and the Plancherel theorem. Finally, we apply the Clifford Fourier transform properties for proving an uncertainty principle for Cl-3,Cl-0 multivector functions.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条
  • [41] Sedenions, the Clifford algebra Cl(8), and three fermion generations
    Gresnigt, Niels G.
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [42] Covariant isotropic constitutive relations in clifford's geometric algebra
    Puska, P
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2001, 15 (03) : 409 - 410
  • [43] Clifford algebra approach to pointwise convergence of Fourier series on spheres
    Minggang Fei
    Tao Qian
    Science in China Series A: Mathematics, 2006, 49 : 1553 - 1575
  • [44] The peak algebra and the Hecke-Clifford algebras at q=0
    Bergeron, N
    Hivert, F
    Thibon, JV
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 107 (01) : 1 - 19
  • [45] A sharp Clifford wavelet Heisenberg-type uncertainty principle
    Banouh, Hicham
    Ben Mabrouk, Anouar
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
  • [46] UAV's Agricultural Image Segmentation Predicated by Clifford Geometric Algebra
    Khan, Prince Waqas
    Xu, Guangxia
    Latif, Muhammad Ahsan
    Abbas, Khizar
    Yasin, Ammara
    IEEE ACCESS, 2019, 7 : 38442 - 38450
  • [47] Clifford geometric algebras in multilinear algebra and non-euclidean geometries
    Sobczyk, G
    COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 1 - 27
  • [48] The quantum/classical interface: Insights from Clifford's (geometric) algebra
    Baylis, WE
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 375 - 391
  • [49] A New Approach to Differential Geometry Using Clifford's Geometric Algebra
    Hristov, Milen
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2014, 33 : 109 - 112
  • [50] Euclidean geometric objects in the Clifford geometric algebra of {origin, 3-space, infinity}
    Hitzer, EMS
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (05) : 653 - 662