Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model

被引:14
|
作者
Santra, S. B. [1 ]
Chanu, S. Ranjita [1 ]
Deb, Debabrata [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Gauhati 781039, Assam, India
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevE.75.041122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rotational constraint representing a local external bias generally has a nontrivial effect on the critical behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational bias in an out-of-equilibrium situation like self-organized criticality, a two state '' quasideterministic '' rotational sandpile model is developed here imposing rotational constraint on the flow of sand grains. An extended set of critical exponents are estimated to characterize the avalanche properties at the nonequilibrium steady state of the model. The probability distribution functions are found to obey usual finite size scaling supported by negative time autocorrelation between the toppling waves. The model exhibits characteristics of both deterministic and stochastic sandpile models.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Universality class in Abelian sandpile models with Stochastic toppling rules
    Pan, GJ
    Zhang, DM
    Sun, HZ
    Yin, YP
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (03) : 483 - 486
  • [42] Mapping the train model for earthquakes onto the stochastic sandpile model
    Chianca, C. V.
    Sa Martins, J. S.
    de Oliveira, P. M. C.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04): : 549 - 555
  • [43] Uniform Threshold for Fixation of the Stochastic Sandpile Model on the Line
    Podder, Moumanti
    Rolla, Leonardo T.
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (03)
  • [44] Universality Class in Abelian Sandpile Models with Stochastic Toppling Rules
    PAN Gui-Jun
    ZHANG Duan-Ming
    SUN Hong-Zhang
    YIN Yan-Ping Department of Physics
    Communications in Theoretical Physics, 2005, 44 (09) : 483 - 486
  • [45] Invasion sandpile model
    Najafi, M. N.
    Moghaddam, Z.
    Samadpour, M.
    Araujo, Nuno A. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (07):
  • [46] A sandpile model with dip
    Hemmingsson, J
    PHYSICA A, 1996, 230 (3-4): : 329 - 335
  • [47] ABELIAN SANDPILE MODEL
    CHAU, HF
    PHYSICAL REVIEW E, 1993, 47 (06) : R3815 - R3817
  • [48] Introduction to the sandpile model
    Ivashkevich, EV
    Priezzhev, VB
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 254 (1-2) : 97 - 116
  • [49] An Anisotropic Model of Sandpile
    Wang Xin
    WuhanUniversityJournalofNaturalSciences, 2000, (04) : 436 - 440
  • [50] ASYMMETRIC ABELIAN SANDPILE MODELS
    SPEER, ER
    JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (1-2) : 61 - 74