Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model

被引:14
|
作者
Santra, S. B. [1 ]
Chanu, S. Ranjita [1 ]
Deb, Debabrata [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Gauhati 781039, Assam, India
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevE.75.041122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rotational constraint representing a local external bias generally has a nontrivial effect on the critical behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational bias in an out-of-equilibrium situation like self-organized criticality, a two state '' quasideterministic '' rotational sandpile model is developed here imposing rotational constraint on the flow of sand grains. An extended set of critical exponents are estimated to characterize the avalanche properties at the nonequilibrium steady state of the model. The probability distribution functions are found to obey usual finite size scaling supported by negative time autocorrelation between the toppling waves. The model exhibits characteristics of both deterministic and stochastic sandpile models.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stochastic sandpile on a cycle
    Melchionna, Andrew
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (19)
  • [22] Rotational sandpile models: A finite size scaling study
    Ahmed, Jahir Abbas
    Santra, S. B.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) : 1851 - 1855
  • [23] Exact solution of a stochastic directed sandpile model
    Kloster, M
    Maslov, S
    Tang, C
    PHYSICAL REVIEW E, 2001, 63 (02):
  • [24] EXACT SOLUTION OF A DETERMINISTIC SANDPILE MODEL IN ONE DIMENSION
    LEE, SC
    LIANG, NY
    TZENG, WJ
    PHYSICAL REVIEW LETTERS, 1991, 67 (12) : 1479 - 1481
  • [25] Sandpile under rotational constraint
    Santra, S. B.
    Deb, D.
    INDIAN JOURNAL OF PHYSICS, 2008, 82 (03) : 295 - 302
  • [26] A natural stochastic extension of the sandpile model on a graph
    Chan, Yao-ban
    Marckert, Jean-Francois
    Selig, Thomas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1913 - 1928
  • [27] CHAOS IN SANDPILE MODELS
    Moghimi-Araghi, Saman
    Mollabashi, Ali
    MODERN PHYSICS LETTERS B, 2011, 25 (08): : 569 - 579
  • [28] Universality in sandpile models
    BenHur, A
    Biham, O
    PHYSICAL REVIEW E, 1996, 53 (02) : R1317 - R1320
  • [29] Sandpile Models in the Large
    Ruelle, Philippe
    FRONTIERS IN PHYSICS, 2021, 9
  • [30] Variable predictability in deterministic dissipative sandpile
    Shnirman, M. G.
    Shapoval, A. B.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2010, 17 (01) : 85 - 91