Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model

被引:14
|
作者
Santra, S. B. [1 ]
Chanu, S. Ranjita [1 ]
Deb, Debabrata [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Gauhati 781039, Assam, India
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevE.75.041122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rotational constraint representing a local external bias generally has a nontrivial effect on the critical behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational bias in an out-of-equilibrium situation like self-organized criticality, a two state '' quasideterministic '' rotational sandpile model is developed here imposing rotational constraint on the flow of sand grains. An extended set of critical exponents are estimated to characterize the avalanche properties at the nonequilibrium steady state of the model. The probability distribution functions are found to obey usual finite size scaling supported by negative time autocorrelation between the toppling waves. The model exhibits characteristics of both deterministic and stochastic sandpile models.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Nonconservative sandpile models
    Ghaffari, P
    Lise, S
    Jensen, HJ
    PHYSICAL REVIEW E, 1997, 56 (06): : 6702 - 6709
  • [32] THEORETICAL SANDPILE WITH STOCHASTIC SLIDE
    DING, EJ
    LU, YN
    OUYANG, HF
    PHYSICAL REVIEW A, 1992, 46 (10): : R6136 - R6139
  • [33] Series expansion for a stochastic sandpile
    Stilck, JF
    Dickman, R
    Vidigal, RR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04): : 1145 - 1157
  • [34] EXACT SOLUTION OF A ONE-DIMENSIONAL DETERMINISTIC SANDPILE MODEL
    CHANG, D
    LEE, SC
    TZENG, WJ
    PHYSICAL REVIEW E, 1995, 51 (06): : 5515 - 5519
  • [35] THE POWER SPECTRUM OF THE MASS IN A SANDPILE MODEL WITH STOCHASTIC SLIDE
    OUYANG, HF
    HUANG, ZQ
    DING, EJ
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1995, 4 (03): : 161 - 168
  • [36] Uniform Threshold for Fixation of the Stochastic Sandpile Model on the Line
    Moumanti Podder
    Leonardo T. Rolla
    Journal of Statistical Physics, 2021, 182
  • [38] Moment analysis of different stochastic directed sandpile model
    Zhang, DM
    Pan, GJ
    Sun, HZ
    Ying, YP
    Li, R
    PHYSICS LETTERS A, 2005, 337 (4-6) : 285 - 291
  • [39] 2-DIMENSIONAL SANDPILE MODEL WITH STOCHASTIC SLIDE
    OUYANG, HF
    LU, YN
    DING, EJ
    PHYSICAL REVIEW E, 1993, 48 (04): : 2413 - 2417
  • [40] Mapping the train model for earthquakes onto the stochastic sandpile model
    C. V. Chianca
    J. S. Sá Martins
    P. M.C. de Oliveira
    The European Physical Journal B, 2009, 68 : 549 - 555