Polynomial multiple recurrence over rings of integers

被引:2
|
作者
Bergelson, Vitaly [1 ]
Robertson, Donald [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; TOPOLOGICAL DYNAMICS; SZEMEREDI; CONVERGENCE; SETS;
D O I
10.1017/etds.2014.138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the polynomial Szemeredi theorem to intersective polynomials over the ring of integers of an algebraic number field, by which we mean polynomials having a common root modulo every ideal. This leads to the existence of new polynomial configurations in positive-density subsets of Z(m) and strengthens and extends recent results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial Szemeredi theorem. Adv. Math. 219(1) (2008), 369-388] on polynomials over the integers.
引用
收藏
页码:1354 / 1378
页数:25
相关论文
共 50 条
  • [31] MATRICES OVER RINGS OF ALGEBRAIC-INTEGERS
    NEWMAN, M
    THOMPSON, RC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 145 : 1 - 20
  • [32] POLYNOMIAL BOUNDS IN POLYNOMIAL-RINGS OVER FIELDS
    SCHMIDTGOTTSCH, K
    [J]. JOURNAL OF ALGEBRA, 1989, 125 (01) : 164 - 180
  • [33] POLYNOMIAL D(4)-QUADRUPLES OVER GAUSSIAN INTEGERS
    Trebjesanin, Marija bliznac
    Bujacic, Sanda
    [J]. GLASNIK MATEMATICKI, 2024, 59 (01) : 1 - 31
  • [34] RINGS OVER WHICH POLYNOMIAL RINGS ARE ARMENDARIZ AND REVERSIBLE
    Ahn, Jung Ho
    Choi, Min Jeong
    Choi, Si Ra
    Jeong, Won Seok
    Kim, Jung Soo
    Lee, Jeong Yeol
    Lee, Soon Ji
    Lee, Young Sun
    Noh, Dong Hyun
    Noh, Yu Seung
    Park, Gyeong Hyeon
    Lee, Chang Ik
    Lee, Yang
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (03): : 273 - 284
  • [35] Polynomial rings over nil rings need not be nil
    Smoktunowicz, A
    [J]. JOURNAL OF ALGEBRA, 2000, 233 (02) : 427 - 436
  • [36] Polynomial rings over symmetric rings need not be symmetric
    Wang, ZP
    Wang, LM
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 1043 - 1047
  • [37] On primitive ideals in polynomial rings over nil rings
    Smoktunowicz, A
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (01) : 69 - 73
  • [38] POLYNOMIAL RINGS OVER NLI RINGS NEED NOT BE NLI
    Chen, Weixing
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (01) : 129 - 133
  • [39] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12
  • [40] On skew polynomial rings over locally nilpotent rings
    Chen, Fei Yu
    Hagan, Hannah
    Wang, Allison
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1102 - 1104