RINGS OVER WHICH POLYNOMIAL RINGS ARE ARMENDARIZ AND REVERSIBLE

被引:0
|
作者
Ahn, Jung Ho [1 ]
Choi, Min Jeong
Choi, Si Ra
Jeong, Won Seok
Kim, Jung Soo
Lee, Jeong Yeol
Lee, Soon Ji
Lee, Young Sun
Noh, Dong Hyun
Noh, Yu Seung
Park, Gyeong Hyeon
Lee, Chang Ik [2 ]
Lee, Yang [3 ]
机构
[1] Pusan Sci High Sch, Dept Math, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[3] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2012年 / 20卷 / 03期
关键词
reversibly Armendariz ring; polynomial ring; reversible ring; Armendariz ring; nilradical;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called reversibly Armendariz if b(j)a(i) = 0 for all i, j whenever f(x)g(x) = 0 for two polynomials f(x) = Sigma(m)(i=0) a(i)x(i), g(x) = Sigma(n)(j=0) b(j)x(j) over R. It is proved that a ring R is reversibly Armendariz if and only if its polynomial ring is reversibly Armendariz if and only if its Laurent polynomial ring is reversibly Armendariz. Relations between reversibly Armendariz rings and related ring properties are examined in this note, observing the structures of many examples concerned. Various kinds of reversibly Armendariz rings are provided in the process. Especially it is shown to be possible to construct reversibly Armendariz rings from given any Armendariz rings.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 50 条
  • [1] POLYNOMIAL RINGS OVER WEAK ARMENDARIZ RINGS NEED NOT BE WEAK ARMENDARIZ
    Chen, Weixing
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2528 - 2532
  • [2] RADICALS OF SKEW POLYNOMIAL AND SKEW LAURENT POLYNOMIAL RINGS OVER SKEW ARMENDARIZ RINGS
    Nasr-Isfahani, A. R.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 1337 - 1349
  • [3] Skew polynomial rings over sigma-skew Armendariz rings
    Bhat, V. K.
    Abrol, Meeru
    COGENT MATHEMATICS, 2016, 3
  • [4] On a property of polynomial rings over reversible rings
    Jin, Hai-lan
    Kim, Hong Kee
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 836 - 851
  • [5] RINGS OVER WHICH POLYNOMIAL RINGS ARE NI
    Han, Juncheol
    Lee, Yang
    Yang, Sung Pil
    CONTEMPORARY RING THEORY 2011, 2012, : 1 - 9
  • [6] Weakly Armendariz Rings Relative to Skew Polynomial Rings
    Liang, Li
    Yang, Chunhua
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (04) : 527 - 533
  • [7] Generalizations of reversible and Armendariz rings
    Han, Juncheol
    Kwak, Tai Keun
    Lee, Chang Ik
    Lee, Yang
    Seo, Yeonsook
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (05) : 911 - 933
  • [8] Skew armendariz rings and annihilator ideals of Skew polynomial rings
    Cortes, W
    ALGEBRAIC STRUCTURES AND THEIR REPRESENTATIONS, 2005, 376 : 249 - 259
  • [9] RINGS WHICH ARE ALMOST POLYNOMIAL RINGS
    EAKIN, P
    SILVER, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 174 (447) : 425 - 449
  • [10] RINGS WHICH ARE ALMOST POLYNOMIAL RINGS
    EAKIN, PM
    SILVER, JL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A354 - A354