POLYNOMIAL RINGS OVER NLI RINGS NEED NOT BE NLI

被引:1
|
作者
Chen, Weixing [1 ]
机构
[1] Shandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Peoples R China
关键词
NLI rings; polynomial rings; Jacobson radicals; Koethe's problem;
D O I
10.1556/SScMath.52.2015.1.1305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that there exists an NI ring R over which the polynomial ring R[x] is not an NLI ring. This answers an open question of Qu and Wei (Stud. Sci. Math. Hung., 5 1 (2), 2014) in the negative. Moreover a sufficient condition of R[x] to be an NLI ring is included for an NLI ring R.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [1] Polynomial rings over nil rings need not be nil
    Smoktunowicz, A
    JOURNAL OF ALGEBRA, 2000, 233 (02) : 427 - 436
  • [2] Polynomial rings over symmetric rings need not be symmetric
    Wang, ZP
    Wang, LM
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 1043 - 1047
  • [3] Polynomial rings over symmetric rings need not be symmetric
    Wang, Zhanping
    Wang, Limin
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3609 - 3613
  • [4] POLYNOMIAL RINGS OVER WEAK ARMENDARIZ RINGS NEED NOT BE WEAK ARMENDARIZ
    Chen, Weixing
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2528 - 2532
  • [5] Differential polynomial rings over locally nilpotent rings need not be Jacobson radical
    Smoktunowicz, Agata
    Ziembowski, Michal
    JOURNAL OF ALGEBRA, 2014, 412 : 207 - 217
  • [6] Polynomial rings over Goldie rings
    Antoine, R
    Cedó, F
    JOURNAL OF ALGEBRA, 2001, 237 (01) : 262 - 272
  • [7] ON THE CONNECTION BETWEEN DIFFERENTIAL POLYNOMIAL RINGS AND POLYNOMIAL RINGS OVER NIL RINGS
    Catalano, Louisa
    Chang-Lee, Megan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) : 438 - 441
  • [8] Differential polynomial rings over rings satisfying a polynomial identity
    Bell, Jason P.
    Madill, Blake W.
    Shinko, Forte
    JOURNAL OF ALGEBRA, 2015, 423 : 28 - 36
  • [9] SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 879 - 897
  • [10] A note on polynomial rings over nil rings
    Chebotar, M. A.
    Ke, W. -F.
    Lee, P. -H.
    Puczylowski, E. R.
    MODULES AND COMODULES, 2008, : 169 - +