Polynomial multiple recurrence over rings of integers

被引:2
|
作者
Bergelson, Vitaly [1 ]
Robertson, Donald [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; TOPOLOGICAL DYNAMICS; SZEMEREDI; CONVERGENCE; SETS;
D O I
10.1017/etds.2014.138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the polynomial Szemeredi theorem to intersective polynomials over the ring of integers of an algebraic number field, by which we mean polynomials having a common root modulo every ideal. This leads to the existence of new polynomial configurations in positive-density subsets of Z(m) and strengthens and extends recent results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial Szemeredi theorem. Adv. Math. 219(1) (2008), 369-388] on polynomials over the integers.
引用
收藏
页码:1354 / 1378
页数:25
相关论文
共 50 条