An algorithm for primary decomposition in polynomial rings over the integers

被引:2
|
作者
Pfister, Gerhard [1 ]
Sadiq, Afshan [2 ]
Steidel, Stefan [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, Kaiserslautern, Germany
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
来源
关键词
Grobner bases; Primary decomposition; Modular computation; Parallel computation;
D O I
10.2478/s11533-011-0037-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals, resp. over finite fields, and the idea of Shimoyama-Yokoyama, resp. Eisenbud-Hunecke-Vasconcelos, to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in Singular. Examples and timings are given at the end of the article.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条