AN ALGORITHM TO COMPUTE A PRIMARY DECOMPOSITION OF MODULES IN POLYNOMIAL RINGS OVER THE INTEGERS

被引:2
|
作者
Idrees, Nazeran [1 ]
Pfister, Gerhard [2 ]
Sadiq, Afshan [3 ]
机构
[1] GC Univ, Dept Math, Faisalabad 38000, Pakistan
[2] Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
[3] Jazan Univ, Dept Math, Jazan, Saudi Arabia
关键词
Grobner bases; primary decomposition; primary modules; associated primes; pseudo primary; localization; extraction; GROBNER BASES; IDEALS;
D O I
10.1556/SScMath.52.2015.1.1296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an algorithm to compute the primary decomposition of a submodule N of the free module Z[x(1),...,x(n)](m). For this purpose we use algorithms for primary decomposition of ideals in the polynomial ring over the integers. The idea is to compute first the minimal associated primes of N, i.e. the minimal associated primes of the ideal Ann (Z[ x(1),..., x(n)](m) / N) in Z [ x(1),...,x(n)] and then compute the primary components using pseudo-primary decomposition and extraction, following the ideas of Shimoyama-Yokoyama.The algorithms are implemented in SINGULAR.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条