Constrained de Bruijn Codes and their Applications

被引:0
|
作者
Chee, Yeow Meng [1 ]
Etzion, Tuvi [3 ]
Kiah, Han Mao [2 ]
Van Khu Vu [2 ]
Yaakobi, Eitan [3 ]
机构
[1] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-3200003 Haifa, Israel
关键词
D O I
10.1109/isit.2019.8849237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A sequence s = (s1,..., sn) is called a (b, h)-constrained de Bruijn sequence if all substrings of length h starting within b consecutive positions are distinct. A set of (b,h)-constrained de Bruijn sequences is called a (b,h)-constrained de Bruijn code. A (b,h)-constrained de Bruijn sequence was constructed and used as a component of a code correcting multiple limited-shift-errors in racetrack memories. In this work, we show that a (b,h)-constrained de Bruijn code can correct deletions and sticky-insertions and also can determine the locations of these errors in an l-symbol read channel. We also show that it is possible to use sequences from a (b,h)-constrained de Bruijn code to construct a code correcting shift-errors in racetrack memories. As a consequence, we improve the rates on previous known codes. It is shown in this work that a (b,h)-constrained de Bruijn code is a constrained code avoiding a set of specific patterns. Finally, we present some techniques to compute the maximum asymptotic rate and find some efficient encoding/decoding algorithms for (b,h)constrained de Bruijn codes.
引用
收藏
页码:2369 / 2373
页数:5
相关论文
共 50 条
  • [41] Partial Cycle Structure of FSRs and Its Applications in Searching De Bruijn Sequences
    Li, Ming
    Lin, Dongdai
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 598 - 609
  • [42] On the Representation of De Bruijn Graphs
    Chikhi, Rayan
    Limasset, Antoine
    Jackman, Shaun
    Simpson, Jared T.
    Medvedev, Paul
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (05) : 336 - 352
  • [43] A Class of de Bruijn Sequences
    Li, Chaoyun
    Zeng, Xiangyong
    Li, Chunlei
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7955 - 7969
  • [44] Enumerating De Bruijn sequences
    Rosenfeld, VR
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2002, (45) : 71 - 83
  • [45] Bibliography of NG de Bruijn
    de Bruijn, N. G.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 657 - 667
  • [46] Decompositions of de Bruijn networks
    Kopriva, P
    Tvrdík, P
    1998 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 1998, : 580 - 587
  • [47] Generalized de Bruijn Cycles
    Joshua N. Cooper
    Ronald L. Graham
    Annals of Combinatorics, 2004, 8 (1) : 13 - 25
  • [48] Shifted de Bruijn Graphs
    Freij, Ragnar
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 195 - 202
  • [49] Spanning trees for binary directed de bruijn networks and their applications to load balancing
    Lin, Ming-Bo
    Bai, Ming-Hong
    Jan, Gene Eu
    Journal of Marine Science and Technology, 1999, 7 (02): : 117 - 124
  • [50] Distribution of variables in lambda-terms with restrictions on De Bruijn indices and De Bruijn levels
    Gittenberger, Bernhard
    Larcher, Isabella
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):