Constrained de Bruijn Codes and their Applications

被引:0
|
作者
Chee, Yeow Meng [1 ]
Etzion, Tuvi [3 ]
Kiah, Han Mao [2 ]
Van Khu Vu [2 ]
Yaakobi, Eitan [3 ]
机构
[1] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-3200003 Haifa, Israel
关键词
D O I
10.1109/isit.2019.8849237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A sequence s = (s1,..., sn) is called a (b, h)-constrained de Bruijn sequence if all substrings of length h starting within b consecutive positions are distinct. A set of (b,h)-constrained de Bruijn sequences is called a (b,h)-constrained de Bruijn code. A (b,h)-constrained de Bruijn sequence was constructed and used as a component of a code correcting multiple limited-shift-errors in racetrack memories. In this work, we show that a (b,h)-constrained de Bruijn code can correct deletions and sticky-insertions and also can determine the locations of these errors in an l-symbol read channel. We also show that it is possible to use sequences from a (b,h)-constrained de Bruijn code to construct a code correcting shift-errors in racetrack memories. As a consequence, we improve the rates on previous known codes. It is shown in this work that a (b,h)-constrained de Bruijn code is a constrained code avoiding a set of specific patterns. Finally, we present some techniques to compute the maximum asymptotic rate and find some efficient encoding/decoding algorithms for (b,h)constrained de Bruijn codes.
引用
收藏
页码:2369 / 2373
页数:5
相关论文
共 50 条
  • [31] 关于de Bruijn序列
    康庆德
    通信学报, 1991, (06) : 69 - 76+102
  • [32] de Bruijn indices for metaterms
    Bonelli, E
    Kesner, D
    Rios, A
    JOURNAL OF LOGIC AND COMPUTATION, 2005, 15 (06) : 855 - 899
  • [33] On hypercubes in de Bruijn graphs
    Andreae, Thomas
    Hintz, Martin
    Parallel Processing Letters, 1998, 8 (02): : 259 - 268
  • [34] Generalized de Bruijn graphs
    Malyshev, FM
    Tarakanov, VE
    MATHEMATICAL NOTES, 1997, 62 (3-4) : 449 - 456
  • [35] Cutwidth of the De Bruijn graph
    Raspaud, A
    Sykora, O
    Vrto, I
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1995, 29 (06): : 509 - 514
  • [36] On extending de Bruijn sequences
    Becher, Veronica
    Ariel Heiber, Pablo
    INFORMATION PROCESSING LETTERS, 2011, 111 (18) : 930 - 932
  • [37] Balanced de Bruijn Sequences
    Marcovich, Sagi
    Etzion, Tuvi
    Yaakobi, Eitan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1528 - 1533
  • [38] Generalized de Bruijn graphs
    F. M. Malyshev
    V. E. Tarakanov
    Mathematical Notes, 1997, 62 : 449 - 456
  • [39] Enhanced de Bruijn graphs
    Guzide, O
    Wagh, MD
    AMCS '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON ALGORITHMIC MATHEMATICS AND COMPUTER SCIENCE, 2005, : 23 - 28
  • [40] On the Representation of de Bruijn Graphs
    Chikhi, Rayan
    Limasset, Antoine
    Jackman, Shaun
    Simpson, Jared T.
    Medvedev, Paul
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB2014, 2014, 8394 : 35 - 55