Enumerating De Bruijn sequences

被引:0
|
作者
Rosenfeld, VR [1 ]
机构
[1] Univ Haifa, Inst Evolut, IL-31905 Haifa, Israel
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A cycle is a sequence a(1)a(2)...a(r) taken in a circular order-that is, a(1) follows a(r), and a(2)... a(r)a(1),... a(r)a(1)... a(r-1) are all the same cycle as a(1)a(2)... a(r). Given natural numbers q greater than or equal to 1 and s greater than or equal to 2, a cycle of s(q) letters is called a complete cycle [1, 2], or De Bruijn sequence, if subsequences a(i)a(i+1)... a(i+q-1) (1 less than or equal to i less than or equal to s(q)) consist of all possible s(q) ordered sequences b(1)b(2)...b(q) over the alphabet A (\A\ = s). In 1946, De Bruijn proved [1] (see [2]) that the number of complete cycles, under s = 2, is equal to 2(2q-1-q). We propose the overall proof for s greater than or equal to 2, which determines the number of the De Bruijn sequences to be equal to (s!)(sq-1/sq). The demonstration is based on our recent results concerning the characteristic polynomial and permanent of the arc-graph [17], applied herein to some auxiliary digraphs. Wherever possible, the main subject is discussed in the wider context of related combinatorial problems, which first include counting the linear De Bruijn sequences. Obtained results can be used for calculating the number of monocyclic and linear compounds, formed from s sorts of atoms, obeying the specified combinatorial restrictions. The former is equivalent to finding the number of respective necklaces with s kinds of beads.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [1] De Bruijn sequences and De Bruijn graphs for a general language
    Moreno, E
    [J]. INFORMATION PROCESSING LETTERS, 2005, 96 (06) : 214 - 219
  • [2] On extending de Bruijn sequences
    Becher, Veronica
    Ariel Heiber, Pablo
    [J]. INFORMATION PROCESSING LETTERS, 2011, 111 (18) : 930 - 932
  • [3] Balanced de Bruijn Sequences
    Marcovich, Sagi
    Etzion, Tuvi
    Yaakobi, Eitan
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1528 - 1533
  • [4] A Class of de Bruijn Sequences
    Li, Chaoyun
    Zeng, Xiangyong
    Li, Chunlei
    Helleseth, Tor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7955 - 7969
  • [5] Stretching de Bruijn sequences
    Abbas Alhakim
    Maher Nouiehed
    [J]. Designs, Codes and Cryptography, 2017, 85 : 381 - 394
  • [6] Stretching de Bruijn sequences
    Alhakim, Abbas
    Nouiehed, Maher
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (02) : 381 - 394
  • [7] DE BRUIJN SEQUENCES REVISITED
    Kari, Lila
    Xu, Zhi
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (06) : 1307 - 1321
  • [8] Projective de Bruijn Sequences
    Ohtsuka, Yuki
    Matsumoto, Makoto
    Hagita, Mariko
    [J]. SEQUENCES AND THEIR APPLICATIONS - SETA 2008, 2008, 5203 : 167 - +
  • [9] Using alternating de Bruijn sequences to construct de Bruijn tori
    Kreitzer, Matthew
    Nica, Mihai
    Pereira, Rajesh
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1439 - 1454
  • [10] Using alternating de Bruijn sequences to construct de Bruijn tori
    Matthew Kreitzer
    Mihai Nica
    Rajesh Pereira
    [J]. Designs, Codes and Cryptography, 2024, 92 : 1439 - 1454