Efficient segmentation of spatio-temporal data from simulations

被引:0
|
作者
Fodor, IK [1 ]
Kamath, C [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
image segmentation; K-means; Markov random field; simulation data;
D O I
10.1117/12.476618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many domains. A common approach is to segment the 2D frames in order to separate the objects of interest from the background, then estimate the motion of the objects and track them over time. Most existing algorithms assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame separately, we propose an incremental approach which incorporates the segmentation result from the previous time frame when segmenting the data at the current time frame. We start with the simple K-means method, then we study more complicated segmentation techniques based on Maxkov random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as computational complexity.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [21] An adaptive spatio-temporal data management structure for efficient search
    Naka, A
    Saiwaki, N
    Nishida, S
    RO-MAN '97 SENDAI: 6TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN COMMUNICATION, PROCEEDINGS, 1997, : 426 - 431
  • [22] A Computationally Efficient Spatio-Temporal Fusion Model for Reflectance Data
    Zou, Zhaoyuan
    O'Donnell, Ruth
    Miller, Claire
    Lee, Duncan
    Wilkie, Craig
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 81 - 87
  • [23] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [24] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [25] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [26] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [27] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [28] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [29] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [30] Efficient spatio-temporal segmentation for very low bit rate video coding
    Handcock, J
    Canagarajah, N
    Tellert, W
    Bull, D
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '98, PTS 1 AND 2, 1997, 3309 : 544 - 551