Efficient segmentation of spatio-temporal data from simulations

被引:0
|
作者
Fodor, IK [1 ]
Kamath, C [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
image segmentation; K-means; Markov random field; simulation data;
D O I
10.1117/12.476618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many domains. A common approach is to segment the 2D frames in order to separate the objects of interest from the background, then estimate the motion of the objects and track them over time. Most existing algorithms assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame separately, we propose an incremental approach which incorporates the segmentation result from the previous time frame when segmenting the data at the current time frame. We start with the simple K-means method, then we study more complicated segmentation techniques based on Maxkov random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as computational complexity.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [41] Efficient Spatio-Temporal Edge Descriptor
    Tanase, Claudiu
    Merialdo, Bernard
    ADVANCES IN MULTIMEDIA MODELING, 2012, 7131 : 210 - 221
  • [42] Efficient spatio-temporal point convolution
    Maxim, Bogdan
    Nedevschi, Sergiu
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 377 - 382
  • [43] From Spatio-Temporal Data to Manufacturing System Model
    Charpentier, Patrick
    Vejar, Andres
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2014, 25 (05) : 557 - 565
  • [44] Spatio-Temporal Normalization of Data from Heterogeneous Sensors
    Fanelli, Alessio
    Micucci, Daniela
    Mobilio, Marco
    Tisato, Francesco
    2015 10TH INTERNATIONAL JOINT CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), VOL 1, 2015, : 462 - 467
  • [45] Storygraph: Telling Stories from Spatio-temporal Data
    Shrestha, Ayush
    Zhu, Ying
    Miller, Ben
    Zhao, Yi
    ADVANCES IN VISUAL COMPUTING, PT II, 2013, 8034 : 693 - 702
  • [46] Extracting Causal Rules from Spatio-Temporal Data
    Galton, Antony
    Duckham, Matt
    Both, Alan
    SPATIAL INFORMATION THEORY, COSIT 2015, 2015, 9368 : 23 - 43
  • [47] Cloud-Based Framework for Spatio-Temporal Trajectory Data Segmentation and Query
    Kang, Huaqiang
    Liu, Yan
    Zhang, Weishan
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2022, 10 (01) : 258 - 275
  • [48] Chaotic itinerancy, temporal segmentation and spatio-temporal combinatorial codes
    Dias, Juliana R.
    Oliveira, Rodrigo F.
    Kinouchi, Osame
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 1 - 5
  • [49] Spatio-temporal segmentation of mesoscale ocean surface dynamics using satellite data
    Tandeo, Pierre
    Fablet, Ronan
    Garello, Rene
    2013 MTS/IEEE OCEANS - BERGEN, 2013,
  • [50] Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
    Kugele, Alexander
    Pfeil, Thomas
    Pfeiffer, Michael
    Chicca, Elisabetta
    FRONTIERS IN NEUROSCIENCE, 2020, 14