Efficient segmentation of spatio-temporal data from simulations

被引:0
|
作者
Fodor, IK [1 ]
Kamath, C [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
image segmentation; K-means; Markov random field; simulation data;
D O I
10.1117/12.476618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many domains. A common approach is to segment the 2D frames in order to separate the objects of interest from the background, then estimate the motion of the objects and track them over time. Most existing algorithms assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame separately, we propose an incremental approach which incorporates the segmentation result from the previous time frame when segmenting the data at the current time frame. We start with the simple K-means method, then we study more complicated segmentation techniques based on Maxkov random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as computational complexity.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [1] Spatio-temporal segmentation
    Swain, C
    Puri, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [2] Efficient probabilistic spatio-temporal video object segmentation
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS, 2007, : 807 - +
  • [3] CUPID: An efficient spatio-temporal data engine
    Wu, Hang
    Wang, Bo
    Zhang, Ming
    Li, Guanyao
    Li, Ruiyuan
    Liu, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 531 - 544
  • [4] Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
    Chandra, Siddhartha
    Couprie, Camille
    Kokkinos, Iasonas
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8915 - 8924
  • [5] Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation
    Denner, Stefan
    Khakzar, Ashkan
    Sajid, Moiz
    Saleh, Mahdi
    Spiclin, Ziga
    Kim, Seong Tae
    Navab, Nassir
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 111 - 121
  • [6] Efficient Processing of Spatio-Temporal Joins on IoT Data
    Lee, Ki Yong
    Seo, Minji
    Lee, Ryong
    Park, Minwoo
    Lee, Sang-Hwan
    IEEE ACCESS, 2020, 8 : 108371 - 108386
  • [7] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [8] Unified Spatio-Temporal Dynamic Routing for Efficient Video Object Segmentation
    Dang, Jisheng
    Zheng, Huicheng
    Xu, Xiaohao
    Guo, Yulan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4512 - 4526
  • [9] Efficient spatio-temporal segmentation for extracting moving objects in video sequences
    Li, Renjie
    Yu, Songyu
    Yang, Xiaokang
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (03) : 1161 - 1167
  • [10] Spatio-temporal segmentation for video surveillance
    Sun, HZ
    Tan, TN
    ELECTRONICS LETTERS, 2001, 37 (01) : 20 - 21