Efficient probabilistic spatio-temporal video object segmentation

被引:0
|
作者
Ahmed, Rakib [1 ]
Karmakar, Gour C. [1 ]
Dooley, Laurence S. [1 ]
机构
[1] Monash Univ, Gippsland Sch Informat Technol, Clayton, Vic 3168, Australia
关键词
image sequence analysis; video segmentation; joint spatio-temporal; machine vision;
D O I
10.1109/ICIS.2007.95
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the major objectives in multimedia technology is to be able to segment objects automatically from a video sequence, for a diverse range of applications from video surveillance and object tracking through to content-based video retrieval, coding and medical imaging. Probabilistic spatio-temporal (PST) video object segmentation has been shown to be of pivotal importance in achieving better segmentation, because it considers space, colour and time features conjointly in a spatio-temporal framework. Existing PST techniques however, incur high computational expense as they normally have to process large dimensional feature vectors. This paper addresses this problem by presenting a computationally efficient PST video object segmentation algorithm that has reduced dimensionality, with experimental results confirming that for various standard video test sequences, a significant reduction in computational complexity is achieved compared with the existing PST technique, without compromising perceptual picture quality.
引用
收藏
页码:807 / +
页数:2
相关论文
共 50 条
  • [1] Probabilistic spatio-temporal video object segmentation incorporating shape information
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1893 - 1896
  • [2] Unified Spatio-Temporal Dynamic Routing for Efficient Video Object Segmentation
    Dang, Jisheng
    Zheng, Huicheng
    Xu, Xiaohao
    Guo, Yulan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4512 - 4526
  • [3] Incorporation of texture information for joint spatio-temporal probabilistic video object segmentation
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 3089 - 3092
  • [4] Probabilistic spatio-temporal video object segmentation using a priori shape descriptor
    Ahmed, Rakib
    Dooley, Laurence S.
    Karmakar, Gour C.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 1081 - 1084
  • [5] Region-based shape incorporation for probabilistic spatio-temporal video object segmentation
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 2445 - +
  • [6] A Novel Spatio-Temporal Video Object Segmentation Algorithm
    Zhu, Shiping
    Xia, Xi
    Zhang, Qingrong
    Belloulata, Kamel
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-5, 2008, : 1916 - +
  • [7] A spatio-temporal video analysis system for object segmentation
    Xia, JH
    Wang, YL
    [J]. ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 812 - 815
  • [8] Video object segmentation using spatio-temporal deep network
    Ramaswamy, Akshaya
    Gubbi, Jayavardhana
    Balamuralidhar, P.
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Automatic video background replacement using shape-based probabilistic spatio-temporal object segmentation
    Ahmed, Rakib
    Karmakar, Gour C.
    Dooley, Laurence S.
    [J]. 2007 6TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS & SIGNAL PROCESSING, VOLS 1-4, 2007, : 914 - +
  • [10] Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
    Chandra, Siddhartha
    Couprie, Camille
    Kokkinos, Iasonas
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8915 - 8924