Embeddings of rearrangement invariant spaces that are not strictly singular

被引:7
|
作者
Montgomery-Smith, SJ [1 ]
Semenov, EM
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Voronezh State Univ, Dept Math, Voronezh 394693, Russia
关键词
rearrangement invariant space; strictly singular mapping; Rademacher function; Orlicz space;
D O I
10.1023/A:1009825521243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L-1([0,1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space L-Phi with Phi>(*) over bar * (x) = exp(x(2))-1.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条
  • [21] ON ISOMORPHIC EMBEDDINGS IN THE CLASS OF DISJOINTLY HOMOGENEOUS REARRANGEMENT INVARIANT SPACES
    Astashkin, S. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (03) : 505 - 513
  • [22] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01): : 105 - 144
  • [23] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Luboš
    Slavíková, Lenka
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (01): : 105 - 144
  • [24] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Clavero, Nadia
    Soria, Javier
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2930 - 2954
  • [25] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Nadia Clavero
    Javier Soria
    The Journal of Geometric Analysis, 2016, 26 : 2930 - 2954
  • [26] Sobolev Embeddings for Fractional Hajlasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Martin, Joaquim
    Ortiz, Walter A.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1191 - 1204
  • [27] Sobolev Embeddings for Fractional Hajłasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Joaquim Martín
    Walter A. Ortiz
    Potential Analysis, 2023, 59 : 1191 - 1204
  • [28] On strictly singular and strictly cosingular embeddings between Banach lattices of functions
    Cobos, F
    Pustylnik, E
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 : 183 - 190
  • [29] Strictly singular embeddings in L1+L∞
    Sanchez, VM
    Semenov, EM
    Hernandez, FL
    DOKLADY MATHEMATICS, 2005, 71 (03) : 388 - 390
  • [30] Singular integral operators for rearrangement-invariant Morrey spaces on local fields
    Ho, Kwok-Pun
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):