Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces

被引:3
|
作者
Clavero, Nadia [1 ]
Soria, Javier [1 ]
机构
[1] Univ Barcelona, Dept Appl Math & Anal, Gran Via 585, E-08007 Barcelona, Spain
关键词
Sobolev embeddings; Rearrangement-invariant spaces; Hardy operator; Optimal range; Optimal domain; INTERPOLATION; OPERATORS;
D O I
10.1007/s12220-015-9655-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the Sobolev-type embeddings due to Gagliardo (Ric Mat 7:102-137, 1958) and Nirenberg (Ann Sc Norm Sup Pisa 13:115-162, 1959) in the setting of rearrangement invariant (r.i.) spaces. In particular, we concentrate on seeking the optimal domains and the optimal ranges for these embeddings between r.i. spaces and mixed norm spaces. As a consequence, we prove that the classical estimate for the standard Sobolev space (WLp)-L-1 by Poornima (Bull Sci Math 107(3):253-259, 1983), O'Neil (Duke Math J 30:129-142, 1963) and Peetre (Ann Inst Fourier 16(1):279-317, 1966) (1 <= p < n), and by Hansson (Math Scand 45(1):77-102, 1979, Brezis and Wainger (Commun Partial Differ Equ 5(7):773-789, 1980) and Maz'ya (Sobolev spaces, 1985) (p = n) can be further strengthened by considering mixed norms on the target spaces.
引用
收藏
页码:2930 / 2954
页数:25
相关论文
共 50 条
  • [1] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Nadia Clavero
    Javier Soria
    The Journal of Geometric Analysis, 2016, 26 : 2930 - 2954
  • [2] On compactness of Sobolev embeddings in rearrangement-invariant spaces
    Pustylnik, Evgeniy
    FORUM MATHEMATICUM, 2006, 18 (05) : 839 - 852
  • [3] Sobolev Embeddings for Fractional Hajlasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Martin, Joaquim
    Ortiz, Walter A.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1191 - 1204
  • [4] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01): : 105 - 144
  • [5] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Luboš
    Slavíková, Lenka
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (01): : 105 - 144
  • [6] Sobolev Embeddings for Fractional Hajłasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Joaquim Martín
    Walter A. Ortiz
    Potential Analysis, 2023, 59 : 1191 - 1204
  • [7] Mixed norm spaces and rearrangement invariant estimates
    Clavero, Nadia
    Soria, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 878 - 903
  • [8] On a rearrangement-invariant function set that appears in optimal Sobolev embeddings
    Pustylnik, Evgeniy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 788 - 798
  • [9] Integrable cross sections in mixed-norm spaces and Sobolev embeddings
    Clavero, Nadia
    Soria, Javier
    POSITIVITY, 2016, 20 (02) : 435 - 466
  • [10] Integrable cross sections in mixed-norm spaces and Sobolev embeddings
    Nadia Clavero
    Javier Soria
    Positivity, 2016, 20 : 435 - 466