Embeddings of rearrangement invariant spaces that are not strictly singular

被引:7
|
作者
Montgomery-Smith, SJ [1 ]
Semenov, EM
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Voronezh State Univ, Dept Math, Voronezh 394693, Russia
关键词
rearrangement invariant space; strictly singular mapping; Rademacher function; Orlicz space;
D O I
10.1023/A:1009825521243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L-1([0,1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space L-Phi with Phi>(*) over bar * (x) = exp(x(2))-1.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条