A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOM-HOPF MODULES

被引:0
|
作者
Wang, Xing [1 ]
Wang, Dingguo [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
monoidal category; relative Hom-Hopf module; Hom-Yetter-Drinfeld module; braided Hom-bialgebra; DRINFELD TWISTS; ALGEBRAS;
D O I
10.4064/cm8099-4-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first define a Hom-Yetter-Drinfeld category with a new compatibility relation and prove that it is a pre-braided monoidal category. Secondly, let (H,beta) be a Hom-bialgebra, and (A, alpha) a left (H,beta)-comodule algebra. Assume further that (A,alpha) is also a Hom-coalgebra, with a not necessarily Hom-associative or Hom-unital left (H,beta)-action which commutes with alpha,beta. Then we define a right (A,alpha)-action on the tensor product of two relative Hom-Hopf modules. Our main result is that this action gives a monoidal structure on the category of relative Hom-Hopf modules if and only if (A,alpha) is a braided Hom-bialgebra in the category of Hom-Yetter-Drinfeld modules over (H,beta). Finally, we give some examples and discuss the monoidal Hom-Doi-Hopf datum.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 50 条
  • [1] A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOPF MODULES
    Bulacu, Daniel
    Caenepeel, Stefaan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (02)
  • [2] BRAIDED MONOIDAL CATEGORIES AND DOI-HOPF MODULES FOR MONOIDAL HOM-HOPF ALGEBRAS
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 79 - 103
  • [3] MONOIDAL HOM-HOPF ALGEBRAS
    Caenepeel, S.
    Goyvaerts, I.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2216 - 2240
  • [4] Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras
    Bingliang Shen
    Ling Liu
    Frontiers of Mathematics in China, 2017, 12 : 177 - 197
  • [5] Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras
    Shen, Bingliang
    Liu, Ling
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 177 - 197
  • [6] THE FUNDAMENTAL THEOREM AND MASCHKE'S THEOREM IN THE CATEGORY OF RELATIVE HOM-HOPF MODULES
    Chen, Yuanyuan
    Wang, Zhongwei
    Zhang, Liangyun
    COLLOQUIUM MATHEMATICUM, 2016, 144 (01) : 55 - 71
  • [7] SEPARABLE FUNCTORS FOR THE CATEGORY OF DOI HOM-HOPF MODULES
    Guo, Shuangjian
    Zhang, Xiaohui
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 23 - 37
  • [8] Relative Hom-Hopf modules and total integrals
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [9] A MASCHKE TYPE THEOREM FOR RELATIVE HOM-HOPF MODULES
    Guo, Shuangjian
    Chen, Xiu-Li
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) : 783 - 799
  • [10] A Maschke type theorem for relative Hom-Hopf modules
    Shuangjian Guo
    Xiu-Li Chen
    Czechoslovak Mathematical Journal, 2014, 64 : 783 - 799