Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation

被引:3
|
作者
Koh, Dax Enshan [1 ,2 ]
Wang, Guoming [3 ]
Johnson, Peter D. [1 ]
Cao, Yudong [1 ]
机构
[1] Zapata Comp Inc, 100 Fed St, Boston, MA 02110 USA
[2] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[3] Zapata Comp Inc, 325 Front St West,Suite 300, Toronto, ON M5V 2Y1, Canada
关键词
D O I
10.1063/5.0042433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present mathematical and conceptual foundations for the task of robust amplitude estimation using engineered likelihood functions (ELFs), a framework introduced by Wang et al. [PRX Quantum 2, 010346 (2021)] that uses Bayesian inference to enhance the rate of information gain in quantum sampling. These ELFs, which are obtained by choosing tunable parameters in a parametrized quantum circuit to minimize the expected posterior variance of an estimated parameter, play an important role in estimating the expectation values of quantum observables. We give a thorough characterization and analysis of likelihood functions arising from certain classes of quantum circuits and combine this with the tools of Bayesian inference to give a procedure for picking optimal ELF tunable parameters. Finally, we present numerical results to demonstrate the performance of ELFs. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] Robust likelihood functions in Bayesian inference
    Greco, Luca
    Racugno, Walter
    Ventura, Laura
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (05) : 1258 - 1270
  • [2] Robust Approximate Bayesian Inference With Synthetic Likelihood
    Frazier, David T.
    Drovandi, Christopher
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 958 - 976
  • [3] Integrated likelihood functions for non-Bayesian inference
    Severini, Thomas A.
    [J]. BIOMETRIKA, 2007, 94 (03) : 529 - 542
  • [4] BAYESIAN-INFERENCE AND OPTIMALITY OF MAXIMUM LIKELIHOOD ESTIMATION
    HIGGINS, JJ
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1977, 45 (01) : 9 - 11
  • [5] Approximate Bayesian Inference for Doubly Robust Estimation
    Graham, Daniel J.
    McCoy, Emma J.
    Stephens, David A.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 47 - 69
  • [6] Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions
    Wang, Hongqiao
    Li, Jinglai
    [J]. NEURAL COMPUTATION, 2018, 30 (11) : 3072 - 3094
  • [8] Robust and integrative Bayesian neural networks for likelihood-free parameter inference
    Wrede, Fredrik
    Eriksson, Robin
    Jiang, Richard
    Petzold, Linda
    Engblom, Stefan
    Hellander, Andreas
    Singh, Prashant
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] Foundations of statistical inference based on numerical roots of robust pivot functions
    Vinod, HD
    [J]. JOURNAL OF ECONOMETRICS, 1998, 86 (02) : 387 - 396
  • [10] Reformulation of a likelihood approach to fake-lepton estimation in the framework of Bayesian inference
    Erdmann, Johannes
    Grunwald, Cornelius
    Kroeninger, Kevin
    La Cagnina, Salvatore
    Roehrig, Lars
    Varnes, Erich
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1021