Robust and integrative Bayesian neural networks for likelihood-free parameter inference

被引:1
|
作者
Wrede, Fredrik [1 ]
Eriksson, Robin [1 ]
Jiang, Richard [2 ]
Petzold, Linda [2 ]
Engblom, Stefan [1 ]
Hellander, Andreas [1 ]
Singh, Prashant [1 ,3 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Uppsala Univ, Sci Life Lab, Uppsala, Sweden
关键词
likelihood-free parameter inference; neural networks; summary statistics; parameter estimation; COMPUTATION;
D O I
10.1109/IJCNN55064.2022.9892800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference. Existing approaches for learning summarizing networks are mainly based on deterministic neural networks, and do not take network prediction uncertainty into account. This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and produces a proposal posterior density using categorical distributions. An adaptive sampling scheme selects simulation locations to efficiently and iteratively refine the predictive proposal posterior of the network conditioned on observations. This allows for more efficient and robust convergence on comparatively large prior spaces. The approximated proposal posterior can then either be processed through a correction mechanism, or be used in conjunction with a density estimator to arrive at the true posterior. We demonstrate our approach on benchmark examples.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generalized Bayesian likelihood-free inference
    Pacchiardi, Lorenzo
    Khoo, Sherman
    Dutta, Ritabrata
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3628 - 3686
  • [2] Bayesian optimization for likelihood-free cosmological inference
    Leclercq, Florent
    [J]. PHYSICAL REVIEW D, 2018, 98 (06)
  • [3] Likelihood-free Bayesian inference for α-stable models
    Peters, G. W.
    Sisson, S. A.
    Fan, Y.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3743 - 3756
  • [4] Likelihood-free nested sampling for parameter inference of biochemical reaction networks
    Mikelson, Jan
    Khammash, Mustafa
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (10)
  • [5] Sequential Likelihood-Free Inference with Neural Proposal
    Kim, Dongjun
    Song, Kyungwoo
    Kim, Yoon-Yeong
    Shin, Yongjin
    Kang, Wanmo
    Moon, Il-Chul
    Joo, Weonyoung
    [J]. PATTERN RECOGNITION LETTERS, 2023, 169 : 102 - 109
  • [6] Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference
    Peters, Gareth W.
    Nevat, Ido
    Sisson, Scott A.
    Fan, Yanan
    Yuan, Jinhong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5206 - 5218
  • [7] Modularized Bayesian analyses and cutting feedback in likelihood-free inference
    Chakraborty, Atlanta
    Nott, David J.
    Drovandi, Christopher C.
    Frazier, David T.
    Sisson, Scott A.
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [8] Towards end-to-end likelihood-free inference with convolutional neural networks
    Radev, Stefan T.
    Mertens, Ulf K.
    Voss, Andreas
    Koethe, Ullrich
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2020, 73 (01): : 23 - 43
  • [9] Likelihood-free Bayesian analysis of neural network models
    Brandon M Turner
    Per B Sederberg
    James L McClelland
    [J]. BMC Neuroscience, 14 (Suppl 1)
  • [10] Modularized Bayesian analyses and cutting feedback in likelihood-free inference
    Atlanta Chakraborty
    David J. Nott
    Christopher C. Drovandi
    David T. Frazier
    Scott A. Sisson
    [J]. Statistics and Computing, 2023, 33