Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference

被引:5
|
作者
Peters, Gareth W. [1 ,2 ]
Nevat, Ido [3 ]
Sisson, Scott A. [1 ]
Fan, Yanan [1 ]
Yuan, Jinhong [3 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] CSIRO Sydney, Sydney, NSW 1670, Australia
[3] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Approximate Bayesian computation; likelihood free inference; Markov chain Monte Carlo; relay networks; COOPERATIVE DIVERSITY; CAPACITY THEOREMS; MONTE-CARLO; COMPUTATION; MODULATION; PROTOCOLS; SYSTEMS;
D O I
10.1109/TSP.2010.2052457
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a general stochastic model developed for a class of cooperative wireless relay networks, in which imperfect knowledge of the channel state information at the destination node is assumed. The framework incorporates multiple relay nodes operating under general known nonlinear processing functions. When a nonlinear relay function is considered, the likelihood function is generally intractable resulting in the maximum likelihood and the maximum a posteriori detectors not admitting closed form solutions. We illustrate our methodology to overcome this intractability under the example of a popular optimal nonlinear relay function choice and demonstrate how our algorithms are capable of solving the previously intractable detection problem. Overcoming this intractability involves development of specialized Bayesian models. We develop three novel algorithms to perform detection for this Bayesian model, these include a Markov chain Monte Carlo approximate Bayesian computation (MCMC-ABC) approach; an auxiliary variable MCMC (MCMC-AV) approach; and a suboptimal exhaustive search zero forcing (SES-ZF) approach. Finally, numerical examples comparing the symbol error rate (SER) performance versus signal-to-noise ratio (SNR) of the three detection algorithms are studied in simulated examples.
引用
收藏
页码:5206 / 5218
页数:13
相关论文
共 50 条
  • [1] Generalized Bayesian likelihood-free inference
    Pacchiardi, Lorenzo
    Khoo, Sherman
    Dutta, Ritabrata
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3628 - 3686
  • [2] Bayesian optimization for likelihood-free cosmological inference
    Leclercq, Florent
    [J]. PHYSICAL REVIEW D, 2018, 98 (06)
  • [3] Likelihood-free Bayesian inference for α-stable models
    Peters, G. W.
    Sisson, S. A.
    Fan, Y.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3743 - 3756
  • [4] Likelihood-free inference via classification
    Gutmann, Michael U.
    Dutta, Ritabrata
    Kaski, Samuel
    Corander, Jukka
    [J]. STATISTICS AND COMPUTING, 2018, 28 (02) : 411 - 425
  • [5] Robust and integrative Bayesian neural networks for likelihood-free parameter inference
    Wrede, Fredrik
    Eriksson, Robin
    Jiang, Richard
    Petzold, Linda
    Engblom, Stefan
    Hellander, Andreas
    Singh, Prashant
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Likelihood-free inference via classification
    Michael U. Gutmann
    Ritabrata Dutta
    Samuel Kaski
    Jukka Corander
    [J]. Statistics and Computing, 2018, 28 : 411 - 425
  • [7] Probabilistic damage detection using a new likelihood-free Bayesian inference method
    Zeng, Jice
    Todd, Michael D.
    Hu, Zhen
    [J]. JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2023, 13 (2-3) : 319 - 341
  • [8] Probabilistic damage detection using a new likelihood-free Bayesian inference method
    Jice Zeng
    Michael D. Todd
    Zhen Hu
    [J]. Journal of Civil Structural Health Monitoring, 2023, 13 : 319 - 341
  • [9] Modularized Bayesian analyses and cutting feedback in likelihood-free inference
    Chakraborty, Atlanta
    Nott, David J.
    Drovandi, Christopher C.
    Frazier, David T.
    Sisson, Scott A.
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [10] COSMOABC: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation
    Ishida, E. E. O.
    Vitenti, S. D. P.
    Penna-Lima, M.
    Cisewski, J.
    de Souza, R. S.
    Trindade, A. M. M.
    Cameron, E.
    Busti, V. C.
    [J]. ASTRONOMY AND COMPUTING, 2015, 13 : 1 - 11