Robust and integrative Bayesian neural networks for likelihood-free parameter inference

被引:1
|
作者
Wrede, Fredrik [1 ]
Eriksson, Robin [1 ]
Jiang, Richard [2 ]
Petzold, Linda [2 ]
Engblom, Stefan [1 ]
Hellander, Andreas [1 ]
Singh, Prashant [1 ,3 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Uppsala Univ, Sci Life Lab, Uppsala, Sweden
关键词
likelihood-free parameter inference; neural networks; summary statistics; parameter estimation; COMPUTATION;
D O I
10.1109/IJCNN55064.2022.9892800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference. Existing approaches for learning summarizing networks are mainly based on deterministic neural networks, and do not take network prediction uncertainty into account. This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and produces a proposal posterior density using categorical distributions. An adaptive sampling scheme selects simulation locations to efficiently and iteratively refine the predictive proposal posterior of the network conditioned on observations. This allows for more efficient and robust convergence on comparatively large prior spaces. The approximated proposal posterior can then either be processed through a correction mechanism, or be used in conjunction with a density estimator to arrive at the true posterior. We demonstrate our approach on benchmark examples.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ELFI: Engine for Likelihood-Free Inference
    Lintusaari, Jarno
    Vuollekoski, Henri
    Kangasraasio, Antti
    Skyten, Kusti
    Jarvenpaa, Marko
    Marttinen, Pekka
    Gutmann, Michael U.
    Vehtari, Aki
    Corander, Jukka
    Kaski, Samuel
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [22] Expectation Propagation for Likelihood-Free Inference
    Barthelme, Simon
    Chopin, Nicolas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 315 - 333
  • [23] On Contrastive Learning for Likelihood-free Inference
    Durkan, Conor
    Murray, Iain
    Papamakarios, George
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [24] Likelihood-free inference in high dimensions with synthetic likelihood
    Ong, Victor M. H.
    Nott, David J.
    Minh-Ngoc Tran
    Sisson, Scott A.
    Drovandi, Christopher C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 271 - 291
  • [25] Likelihood-free inference via classification
    Michael U. Gutmann
    Ritabrata Dutta
    Samuel Kaski
    Jukka Corander
    [J]. Statistics and Computing, 2018, 28 : 411 - 425
  • [26] On Contrastive Learning for Likelihood-free Inference
    Durkan, Conor
    Murray, Iain
    Papamakarios, George
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [27] Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
    Gutmann, Michael U.
    Corander, Jukka
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [28] Probabilistic damage detection using a new likelihood-free Bayesian inference method
    Zeng, Jice
    Todd, Michael D.
    Hu, Zhen
    [J]. JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2023, 13 (2-3) : 319 - 341
  • [29] Probabilistic damage detection using a new likelihood-free Bayesian inference method
    Jice Zeng
    Michael D. Todd
    Zhen Hu
    [J]. Journal of Civil Structural Health Monitoring, 2023, 13 : 319 - 341
  • [30] Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
    Hsu, Kelvin
    Ramos, Fabio
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89