Bethe ansatz solutions for Temperley-Lieb quantum spin chains

被引:0
|
作者
Ghiotto, RCT [1 ]
Malvezzi, AL [1 ]
机构
[1] Univ Estadual Paulista, UNESP Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
来源
关键词
D O I
10.1142/S0217751X00001243
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
引用
收藏
页码:3395 / 3425
页数:31
相关论文
共 50 条
  • [31] Monomials and Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF ALGEBRA, 1997, 190 (02) : 498 - 517
  • [32] On the affine Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 366 - 380
  • [33] Affine Temperley-Lieb algebras
    Gnerre, S
    JOURNAL OF OPERATOR THEORY, 2000, 43 (01) : 35 - 42
  • [34] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [35] Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices
    Kulish, P. P.
    Manojlovic, N.
    Nagy, Z.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
  • [36] The quantum spin chains of Temperley–Lieb type and the topological basis states
    Chunfang Sun
    Kang Xue
    Gangcheng Wang
    Chengcheng Zhou
    Guijiao Du
    Quantum Information Processing, 2013, 12 : 3079 - 3092
  • [37] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [38] Parabolic Temperley-Lieb modules and polynomials
    Sentinelli, Paolo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 138 : 1 - 28
  • [39] Braid Group, Temperley-Lieb Algebra, and Quantum Information and Computation
    Zhang, Yong
    ADVANCES IN QUANTUM COMPUTATION, 2009, 482 : 49 - 89
  • [40] TEMPERLEY-LIEB LATTICE MODELS ARISING FROM QUANTUM GROUPS
    BATCHELOR, MT
    KUNIBA, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11): : 2599 - 2614