Bethe ansatz solutions for Temperley-Lieb quantum spin chains

被引:0
|
作者
Ghiotto, RCT [1 ]
Malvezzi, AL [1 ]
机构
[1] Univ Estadual Paulista, UNESP Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
来源
关键词
D O I
10.1142/S0217751X00001243
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
引用
收藏
页码:3395 / 3425
页数:31
相关论文
共 50 条
  • [21] Temperley-Lieb stochastic processes
    Pearce, PA
    Rittenberg, V
    de Gier, J
    Nienhuis, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (45): : L661 - L668
  • [22] Entanglement and the Temperley-Lieb category
    Brannan, Michael
    Collins, Benoit
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 27 - 50
  • [23] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [24] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [25] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [26] Factorized solutions of Temperley-Lieb qKZ equations on a segment
    De Gier, Jan
    Pyatov, Pavel
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (03) : 795 - 877
  • [27] Exact solutions for A-D Temperley-Lieb models
    Koberle, R
    LimaSantos, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03): : 519 - 531
  • [28] Meanders and the Temperley-Lieb algebra
    P. Di Francesco
    O. Golinelli
    E. Guitter
    Communications in Mathematical Physics, 1997, 186 (1) : 1 - 59
  • [29] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [30] PRESENTATIONS FOR TEMPERLEY-LIEB ALGEBRAS
    East, James
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1253 - 1269