The Locating-Chromatic Number of Binary Trees

被引:7
|
作者
Syofyan, Dian Kastika [1 ]
Baskoro, Edy Tri [1 ]
Assiyatun, Hilda [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
关键词
Color code; locating-chromatic number; tree graph; binary tree;
D O I
10.1016/j.procs.2015.12.079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (V, E) be a connected graph. The locating-chromatic number of G, denoted by chi(L)(G), is the cardinality of a minimum locating coloring of the vertex set V(G) such that all vertices have distinct coordinates. The results on locating-chromatic number of graphs are still limited. In particular, the locating-chromatic number of trees is not completely solved. Therefore, in this paper, we study the locating-chromatic number of any binary tree. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [41] The locating chromatic number of generalized Petersen graphs with small order
    Sakri, Redha
    Abbas, Moncef
    EXAMPLES AND COUNTEREXAMPLES, 2021, 5
  • [42] The locating chromatic number for m-shadow of a connected graph
    Sudarsana, I. Wayan
    Susanto, Faisal
    Musdalifah, Selvy
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 589 - 601
  • [43] The dominating partition dimension and locating- chromatic number of graphs
    Ridwan, Muhammad
    Assiyatun, Hilda
    Baskoro, Edy Tri
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 455 - 465
  • [44] ON TWO CONJECTURES REGARDING THE NEIGHBOR-LOCATING CHROMATIC NUMBER
    Ghanbari, Ali
    Mojdeh, Doost ali
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [45] Chromatic binary search trees - A structure for concurrent rebalancing
    Nurmi, O
    SoisalonSoininen, E
    ACTA INFORMATICA, 1996, 33 (06) : 547 - 557
  • [46] Radius three trees in graphs with large chromatic number
    Kierstead, HA
    Zhu, YX
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 17 (04) : 571 - 581
  • [47] The k-distance chromatic number of trees and cycles
    Niranjan, P. K.
    Kola, Srinivasa Rao
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 230 - 235
  • [48] Relaxed game chromatic number of trees and outerplanar graphs
    He, WJ
    Wu, JJ
    Zhu, XD
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 209 - 219
  • [49] Partial k-trees with maximum chromatic number
    Chlebíková, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 269 - 276
  • [50] A note on the locating-total domination number in trees
    Rad, Nader Jafari
    Rahbani, Hadi
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 420 - 424