The Locating-Chromatic Number of Binary Trees

被引:7
|
作者
Syofyan, Dian Kastika [1 ]
Baskoro, Edy Tri [1 ]
Assiyatun, Hilda [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
关键词
Color code; locating-chromatic number; tree graph; binary tree;
D O I
10.1016/j.procs.2015.12.079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (V, E) be a connected graph. The locating-chromatic number of G, denoted by chi(L)(G), is the cardinality of a minimum locating coloring of the vertex set V(G) such that all vertices have distinct coordinates. The results on locating-chromatic number of graphs are still limited. In particular, the locating-chromatic number of trees is not completely solved. Therefore, in this paper, we study the locating-chromatic number of any binary tree. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [31] On the Locating Chromatic Number of the Cartesian Product of Graphs
    Behtoei, Ali
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 221 - 235
  • [32] Locating Chromatic Number of Powers of Paths and Cycles
    Ghanem, Manal
    Al-Ezeh, Hasan
    Dabbour, Ala'a
    SYMMETRY-BASEL, 2019, 11 (03):
  • [33] ON THE CHROMATIC NUMBER OF BINARY MATROIDS
    WALTON, PN
    WELSH, DJA
    MATHEMATIKA, 1980, 27 (53) : 1 - 9
  • [34] Martingales on Trees and the Empire Chromatic Number of Random Trees
    Cooper, Colin
    McGrae, Andrew R. A.
    Zito, Michele
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2009, 5699 : 74 - +
  • [35] The Game Chromatic Number of Trees and Forests
    Dunn, Charles
    Larsen, Victor
    Lindke, Kira
    Retter, Troy
    Toci, Dustin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (02): : 31 - 48
  • [36] A Procedure for Determining The Locating Chromatic Number of An Origami Graphs
    Irawan, Agus
    Asmiati
    Utami, Bernadhita Herindri Samodra
    Nuryaman, Aang
    Muludi, Kurnia
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (09): : 31 - 34
  • [37] Local antimagic chromatic number of trees - I
    Premalatha, K.
    Arumugam, S.
    Lee, Yi-Chun
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1591 - 1602
  • [38] Induced trees in graphs of large chromatic number
    Scott, AD
    JOURNAL OF GRAPH THEORY, 1997, 24 (04) : 297 - 311
  • [39] On the degree of trees with game chromatic number 4
    Furtado, Ana Luisa C.
    Palma, Miguel A. D. R.
    Dantas, Simone
    de Figueiredo, Celina M. H.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2757 - 2767
  • [40] BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 49 - 62