Error bounds for data-driven models of dynamical systems

被引:9
|
作者
Oleng, Nicholas O. [1 ]
Gribok, Andrei [1 ]
Reifman, Jaques [1 ]
机构
[1] USA, Med Res & Mat Command, Bioinformat Cell, Frederick, MD 21702 USA
关键词
physiologic measurement predictions; bootstrap; error bounds; confidence interval; prediction interval; time-series data; dynamical systems;
D O I
10.1016/j.compbiomed.2006.06.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work provides a technique for estimating error bounds about the predictions of data-driven models of dynamical systems. The bootstrap technique is applied to predictions from a set of dynamical system models, rather than from the time-series data, to estimate the reliability (in the form of prediction intervals) for each prediction. The technique is illustrated using human core temperature data, modeled by a hybrid (autoregressive plus first principles) approach. The temperature prediction intervals obtained are in agreement with those from the Camp-Meidell inequality. Moreover, as expected, the prediction intervals increase with the prediction horizon, time-series data variability, and model inaccuracy. Published by Elsevier Ltd.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 50 条
  • [1] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    [J]. NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [2] CoDBench: a critical evaluation of data-driven models for continuous dynamical systems
    Burark, Priyanshu
    Tiwari, Karn
    Rashid, Meer Mehran
    Prathosh, A. P.
    Krishnan, N. M. Anoop
    [J]. DIGITAL DISCOVERY, 2024, 3 (06): : 1172 - 1181
  • [3] Data-driven closures for stochastic dynamical systems
    Brennan, Catherine
    Venturi, Daniele
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 281 - 298
  • [4] DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS
    Gosea, Ion Victor
    Gugercin, Serkan
    Beattie, Christopher
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A554 - A582
  • [5] Data-driven interpolation of dynamical systems with delay
    Schulze, Philipp
    Unger, Benjamin
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 97 : 125 - 131
  • [6] Data-driven modeling of interrelated dynamical systems
    Elul, Yonatan
    Rozenberg, Eyal
    Boyarski, Amit
    Yaniv, Yael
    Schuster, Assaf
    Bronstein, Alex M.
    [J]. COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [7] Poster: Estimating Infinitesimal Generators of Stochastic Systems with Formal Error Bounds: A Data-Driven Approach
    Lavaei, Abolfazl
    Nejati, Ameneh
    Soudjani, Sadegh
    Zamani, Majid
    [J]. HSCC2021: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS-IOT WEEK), 2021,
  • [8] Data-driven models of nonautonomous systems
    Lu, Hannah
    Tartakovsky, Daniel M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
  • [9] Data-Driven Models of Monotone Systems
    Makdesi, Anas
    Girard, Antoine
    Fribourg, Laurent
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (08) : 5294 - 5309
  • [10] Error Quantification for the Assessment of Data-Driven Turbulence Models
    James Hammond
    Yuri Frey Marioni
    Francesco Montomoli
    [J]. Flow, Turbulence and Combustion, 2022, 109 : 1 - 26