Data-driven closures for stochastic dynamical systems

被引:16
|
作者
Brennan, Catherine [1 ]
Venturi, Daniele [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
关键词
Reduced-order stochastic modeling; Mori-Zwanzig formulation; Nonlinear dynamics; Liouville equation;
D O I
10.1016/j.jcp.2018.06.038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a new data-driven closure approximation method to compute the statistical properties of quantities of interest in high-dimensional stochastic dynamical systems. The proposed framework relies on estimating system-dependent conditional expectations from sample paths or experimental data, and then using such estimates to compute data-driven solutions to exact probability density function (PDF) equations. We also address the important question of whether enough useful data is being injected into the exact PDF equation for the purpose of computing an accurate numerical solution. Numerical examples are presented and discussed for prototype nonlinear dynamical systems and models of systems biology evolving from random initial states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 50 条
  • [1] Data-driven probability density forecast for stochastic dynamical systems
    Zhao, Meng
    Jiang, Lijian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [2] Data-Driven Reachability Analysis of Stochastic Dynamical Systems with Conformal Inference
    Hashemi, Navid
    Qin, Xin
    Lindemann, Lars
    Deshmukh, Jyotirmoy V.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3102 - 3109
  • [3] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    [J]. NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [4] Data-driven interpolation of dynamical systems with delay
    Schulze, Philipp
    Unger, Benjamin
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 97 : 125 - 131
  • [5] Data-driven modeling of interrelated dynamical systems
    Elul, Yonatan
    Rozenberg, Eyal
    Boyarski, Amit
    Yaniv, Yael
    Schuster, Assaf
    Bronstein, Alex M.
    [J]. COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [6] DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS
    Gosea, Ion Victor
    Gugercin, Serkan
    Beattie, Christopher
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A554 - A582
  • [7] Data-Driven Reduction for a Class of Multiscale Fast-Slow Stochastic Dynamical Systems
    Dsilva, Carmeline J.
    Talmon, Ronen
    Gear, C. William
    Coifman, Ronald R.
    Kevrekidis, Ioannis G.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (03): : 1327 - 1351
  • [8] Data-driven discovery of stochastic dynamical equations of collective motion
    Nabeel, Arshed
    Jadhav, Vivek
    Raj, Danny M.
    Sire, Clement
    Theraulaz, Guy
    Escobedo, Ramon
    Iyer, Srikanth K.
    Guttal, Vishwesha
    [J]. PHYSICAL BIOLOGY, 2023, 20 (05)
  • [9] A Data-Driven Approach for Estimating the Effects of Station Closures in Metro Systems
    Yang, Ming
    Qin, Huarong
    Zhang, Ke
    Ding, Xin
    Mi, Ziyue
    [J]. IEEE ACCESS, 2020, 8 : 213566 - 213573
  • [10] Data-driven discovery of stochastic dynamical systems with α-stable Levy noise based on residual networks
    Li, Kaixuan
    Li, Yang
    Lu, Linghongzhi
    Liu, Xianbin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 462