DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS

被引:9
|
作者
Gosea, Ion Victor [1 ]
Gugercin, Serkan [2 ,3 ]
Beattie, Christopher [2 ,3 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Data Driven Syst Reduct & Identificat DRI, D-39106 Magdeburg, Germany
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[3] Virginia Tech, Div Computat Modeling & Data Analyt, Blacksburg, VA 24061 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2022年 / 44卷 / 01期
基金
美国国家科学基金会;
关键词
balanced truncation; numerical quadrature; data-driven modeling; transfer functions; impulse responses; Gramians; MODEL ORDER REDUCTION; RANK SMITH METHOD; ADI METHODS; LYAPUNOV; TRUNCATION;
D O I
10.1137/21M1411081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel reformulation of balanced truncation, a classical model reduction method. The principal innovation that we introduce comes through the use of system response data that has been either measured or computed, without reference to any prescribed realization of the original model. Data are represented by sampled values of the transfer function or the impulse response corresponding to the original model. We discuss parallels that our approach bears with the Loewner framework, another popular data-driven method. We illustrate our approach numerically in both continuous-time and discrete-time cases.
引用
收藏
页码:A554 / A582
页数:29
相关论文
共 50 条
  • [1] Data-driven discovery of linear dynamical systems from noisy data
    YaSen Wang
    Ye Yuan
    HuaZhen Fang
    Han Ding
    [J]. Science China Technological Sciences, 2024, 67 : 121 - 129
  • [2] Data-driven discovery of linear dynamical systems from noisy data
    WANG YaSen
    YUAN Ye
    FANG HuaZhen
    DING Han
    [J]. Science China Technological Sciences, 2024, 67 (01) : 121 - 129
  • [3] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [4] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    [J]. NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [5] Data-Driven Modeling of Linear Dynamical Systems with Quadratic Output in the AAA Framework
    Ion Victor Gosea
    Serkan Gugercin
    [J]. Journal of Scientific Computing, 2022, 91
  • [6] Data-Driven Modeling of Linear Dynamical Systems with Quadratic Output in the AAA Framework
    Gosea, Ion Victor
    Gugercin, Serkan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [7] Data-driven closures for stochastic dynamical systems
    Brennan, Catherine
    Venturi, Daniele
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 281 - 298
  • [8] Data-driven modeling of interrelated dynamical systems
    Elul, Yonatan
    Rozenberg, Eyal
    Boyarski, Amit
    Yaniv, Yael
    Schuster, Assaf
    Bronstein, Alex M.
    [J]. COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [9] Data-driven interpolation of dynamical systems with delay
    Schulze, Philipp
    Unger, Benjamin
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 97 : 125 - 131
  • [10] Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods
    Hao Chen
    [J]. Calcolo, 2023, 60