Error bounds for data-driven models of dynamical systems

被引:9
|
作者
Oleng, Nicholas O. [1 ]
Gribok, Andrei [1 ]
Reifman, Jaques [1 ]
机构
[1] USA, Med Res & Mat Command, Bioinformat Cell, Frederick, MD 21702 USA
关键词
physiologic measurement predictions; bootstrap; error bounds; confidence interval; prediction interval; time-series data; dynamical systems;
D O I
10.1016/j.compbiomed.2006.06.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work provides a technique for estimating error bounds about the predictions of data-driven models of dynamical systems. The bootstrap technique is applied to predictions from a set of dynamical system models, rather than from the time-series data, to estimate the reliability (in the form of prediction intervals) for each prediction. The technique is illustrated using human core temperature data, modeled by a hybrid (autoregressive plus first principles) approach. The temperature prediction intervals obtained are in agreement with those from the Camp-Meidell inequality. Moreover, as expected, the prediction intervals increase with the prediction horizon, time-series data variability, and model inaccuracy. Published by Elsevier Ltd.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 50 条
  • [21] Selecting and weighting dynamical models using data-driven approaches
    Le Bras, Pierre
    Sevellec, Florian
    Tandeo, Pierre
    Ruiz, Juan
    Ailliot, Pierre
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2024, 31 (03) : 303 - 317
  • [22] Data-driven discovery of linear dynamical systems from noisy data
    YaSen Wang
    Ye Yuan
    HuaZhen Fang
    Han Ding
    [J]. Science China Technological Sciences, 2024, 67 : 121 - 129
  • [23] Data-driven discovery of linear dynamical systems from noisy data
    WANG YaSen
    YUAN Ye
    FANG HuaZhen
    DING Han
    [J]. Science China Technological Sciences, 2024, 67 (01) : 121 - 129
  • [24] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [25] Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator
    Santos Gutierrez, Manuel
    Lucarini, Valerio
    Chekroun, Mickael D.
    Ghil, Michael
    [J]. CHAOS, 2021, 31 (05)
  • [26] Optimal data-driven models of forced dynamical systems: General approach and examples from climate
    Mukhin, D. N.
    Seleznev, A. F.
    Gavrilov, A. S.
    Feigin, A. M.
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2021, 29 (04): : 571 - 602
  • [27] Data-driven spectral decomposition and forecasting of ergodic dynamical systems
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) : 338 - 396
  • [28] Data-driven online convex optimization for control of dynamical systems
    Nonhoff, Marko
    Mueller, Matthias A.
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3640 - 3645
  • [29] Data-driven probability density forecast for stochastic dynamical systems
    Zhao, Meng
    Jiang, Lijian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [30] A data-driven approach to model calibration for nonlinear dynamical systems
    Greve, C. M.
    Hara, K.
    Martin, R. S.
    Eckhardt, D. Q.
    Koo, J. W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2019, 125 (24)