ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES

被引:37
|
作者
Cheskidov, A. [1 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Euler equation; Navier-Stokes equation; ill-posedness; Besov spaces; EULER EQUATIONS; EXISTENCE; ENERGY;
D O I
10.1090/S0002-9939-09-10141-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of a divergence-free vector field u(0) is an element of H(s) boolean AND B(infinity,infinity)(-1) for all s < 1/2, with arbitrarily small norm parallel to u(0)parallel to B(infinity,infinity)(-1) such that any any Leray-Hopf solution to the Navier-Stokes equation starting from u(0) is discontinuous at t = 0 in the metric of B(infinity,infinity)(-1). For the Euler equation a similar result is proved in all Besov spaces B(T,infinity)(S) where s > 0 if r > 2, and s > n(2/r - 1) if 1 <= r <= 2. This includes the space B(3,infinity)(1/3), which is known to be critical for the energy conservation in ideal fluids.
引用
收藏
页码:1059 / 1067
页数:9
相关论文
共 50 条
  • [11] Ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Xiao, Weiliang
    Fei, Xiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [12] Ill-posedness for the gCH-mCH equation in Besov spaces
    Yu, Yanghai
    Wang, Hui
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02): : 471 - 487
  • [13] Well-Posedness and Ill-Posedness Problems of the Stationary Navier–Stokes Equations in Scaling Invariant Besov Spaces
    Hiroyuki Tsurumi
    Archive for Rational Mechanics and Analysis, 2019, 234 : 911 - 923
  • [14] Ill-posedness for the 2D viscous shallow water equations in the critical Besov spaces
    Li, Jinlu
    Hong, Pingzhou
    Zhu, Weipeng
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1287 - 1299
  • [15] Ill-posedness for the 2D viscous shallow water equations in the critical Besov spaces
    Jinlu Li
    Pingzhou Hong
    Weipeng Zhu
    Journal of Evolution Equations, 2020, 20 : 1287 - 1299
  • [16] ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (04) : 919 - 939
  • [17] Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Nie, Yao
    Yuan, Jia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [18] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Fei, Xiang
    Yu, Yanghai
    Fei, Mingwen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [19] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Xiang Fei
    Yanghai Yu
    Mingwen Fei
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [20] Ill-Posedness of a Three-Component Novikov System in Besov Spaces
    Yu, Shengqi
    Zhou, Lin
    MATHEMATICS, 2024, 12 (09)