ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES

被引:37
|
作者
Cheskidov, A. [1 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Euler equation; Navier-Stokes equation; ill-posedness; Besov spaces; EULER EQUATIONS; EXISTENCE; ENERGY;
D O I
10.1090/S0002-9939-09-10141-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of a divergence-free vector field u(0) is an element of H(s) boolean AND B(infinity,infinity)(-1) for all s < 1/2, with arbitrarily small norm parallel to u(0)parallel to B(infinity,infinity)(-1) such that any any Leray-Hopf solution to the Navier-Stokes equation starting from u(0) is discontinuous at t = 0 in the metric of B(infinity,infinity)(-1). For the Euler equation a similar result is proved in all Besov spaces B(T,infinity)(S) where s > 0 if r > 2, and s > n(2/r - 1) if 1 <= r <= 2. This includes the space B(3,infinity)(1/3), which is known to be critical for the energy conservation in ideal fluids.
引用
收藏
页码:1059 / 1067
页数:9
相关论文
共 50 条
  • [31] Ill-posedness in the Einstein equations
    Frittelli, S
    Gomez, R
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (08) : 5535 - 5549
  • [32] Local ill-posedness and source conditions of operator equations in Hilbert spaces
    Hofmann, B
    Scherzer, O
    INVERSE PROBLEMS, 1998, 14 (05) : 1189 - 1206
  • [33] Ill-posedness of degenerate dispersive equations
    Ambrose, David M.
    Simpson, Gideon
    Wright, J. Douglas
    Yang, Dennis G.
    NONLINEARITY, 2012, 25 (09) : 2655 - 2680
  • [34] Ill-posedness of nonlocal Burgers equations
    Benzoni-Gavage, Sylvie
    Coulombel, Jean-Francois
    Tzvetkov, Nikolay
    ADVANCES IN MATHEMATICS, 2011, 227 (06) : 2220 - 2240
  • [35] Ill-posedness for the Burgers equation in Sobolev spaces
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 189 - 197
  • [36] Ill-posedness for the Burgers equation in Sobolev spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 189 - 197
  • [37] A simple ill-posedness proof for incompressible Euler equations in critical Sobolev spaces
    Kim, Junha
    Jeong, In-Jee
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
  • [38] Sharp ill-posedness for the non-resistive MHD equations in Sobolev spaces
    Chen, Qionglei
    Nie, Yao
    Ye, Weikui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (06)
  • [39] Ill-Posedness for the b-Family of Equations
    Himonas, A. Alexandrou
    Grayshan, Katelyn
    Holliman, Curtis
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (05) : 1175 - 1190
  • [40] Ill-Posedness for the b-Family of Equations
    A. Alexandrou Himonas
    Katelyn Grayshan
    Curtis Holliman
    Journal of Nonlinear Science, 2016, 26 : 1175 - 1190