Ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces

被引:4
|
作者
Xiao, Weiliang [1 ]
Fei, Xiang [1 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
关键词
Keywords multidimensional; chemotaxis system; Ill-posedness; Critical Besov spaces; NAVIER-STOKES EQUATIONS; HYPERBOLIC-PARABOLIC SYSTEM; NONLINEAR STABILITY; WELL-POSEDNESS; WAVES;
D O I
10.1016/j.jmaa.2022.126302
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Critical value can be used to distinguish will-posedness and ill-posedness, and there are a lot of research about it. But it still remains a lot of problems about critical value to be solved. In this paper, we prove that a multidimensional chemotaxis system is ill-posedness in <(B) over dot>(d/p-2)(p,sigma) x (<(B) over dot>(d/p-1)(p,sigma))(d) when p = 2d and sigma > 2. Nie and Yuan prove the system is well-posedness when p < 2d and is ill-posedness when p > 2d in [14]. Later Nie and Yuan also prove the system is ill-posed when p = 2d, sigma = 1 in [15]. Indeed, we enrich the text of dichotomy index when p = 2d. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Nie, Yao
    Yuan, Jia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [2] Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    The Journal of Geometric Analysis, 2023, 33
  • [3] Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [4] Ill-posedness for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [5] ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (04) : 919 - 939
  • [6] Ill-Posedness of a Three-Component Novikov System in Besov Spaces
    Yu, Shengqi
    Zhou, Lin
    MATHEMATICS, 2024, 12 (09)
  • [7] On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (04) : 1375 - 1402
  • [8] Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces
    Chengchun Hao
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 825 - 834
  • [9] Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces
    Hao, Chengchun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 825 - 834
  • [10] Ill-posedness for the gCH-mCH equation in Besov spaces
    Yu, Yanghai
    Wang, Hui
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02): : 471 - 487