Ill-posedness for the Euler equations in Besov spaces

被引:1
|
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler equations; Ill-posedness; Besov spaces; NONUNIFORM DEPENDENCE;
D O I
10.1016/j.nonrwa.2023.103941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we consider the Cauchy problem to the Euler equations in Rd with d & GE; 2. We construct an initial data u0 & ISIN; B & sigma;p,& INFIN; showing that the corresponding solution map of the Euler equations starting from u0 is discontinuous at t = 0 in the metric of B & sigma;p,& INFIN; , which implies the ill-posedness for this equation in B & sigma;p,& INFIN;. We generalize the periodic result of Cheskidov and Shvydkoy (2010).& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条