Differentiable Surface Rendering via Non-Differentiable Sampling

被引:5
|
作者
Cole, Forrester [1 ]
Genova, Kyle [1 ]
Sud, Avneesh [1 ]
Vlasic, Daniel [1 ]
Zhang, Zhoutong [1 ,2 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
FIELDS;
D O I
10.1109/ICCV48922.2021.00603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using non-differentiable rasterization, then applies differentiable, depth-aware point splatting to produce the final image. Our approach requires no differentiable meshing or rasterization steps, making it efficient for large 3D models and applicable to isosurfaces extracted from implicit surface definitions. We demonstrate the effectiveness of our method for implicit-, mesh-, and parametric-surface-based inverse rendering and neural-network training applications. In particular, we show for the first time efficient, differentiable rendering of an isosurface extracted from a neural radiance field (NeRF), and demonstrate surface-based, rather than volume-based, rendering of a NeRF.
引用
收藏
页码:6068 / 6077
页数:10
相关论文
共 50 条
  • [1] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [2] Non-differentiable deformations of Rn
    Cresson, Jacky
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [3] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [4] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [5] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [6] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022
  • [7] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123
  • [8] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [9] Renormalisation of non-differentiable potentials
    Alexandre, J.
    Defenu, N.
    Grigolia, G.
    Marian, I. G.
    Mdinaradze, D.
    Trombettoni, A.
    Turovtsi-Shiutev, Y.
    Nandori, I
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [10] Non-differentiable symmetric duality
    Mond, B
    Schechter, M
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) : 177 - 188