Robust Tensor Factorization Using Maximum Correntropy Criterion

被引:0
|
作者
Zhang, Miaohua [1 ]
Gao, Yongsheng [1 ]
Sun, Changming [2 ,3 ]
La Salle, John [2 ,3 ]
Liang, Junli [4 ]
机构
[1] Griffith Univ, Sch Engn, Nathan, Qld, Australia
[2] CSIRO Data61, Canberra, ACT, Australia
[3] NRCA, Canberra, ACT, Australia
[4] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracy rate on handwritten digit recognition.
引用
收藏
页码:4184 / 4189
页数:6
相关论文
共 50 条
  • [1] Robust sparse nonnegative matrix factorization based on maximum correntropy criterion
    Peng, Siyuan
    Ser, Wee
    Lin, Zhiping
    Chen, Badong
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [2] Numerically Robust Maximum Correntropy Criterion Kalman Filtering Using the UD Covariance Factorization Approach
    Kulikova, Maria, V
    Tsyganova, Julia, V
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 1383 - 1388
  • [3] Robust Multidimensional Scaling Using a Maximum Correntropy Criterion
    Mandanas, Fotios D.
    Kotropoulos, Constantine L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 919 - 932
  • [4] Maximum Correntropy Criterion-Based Robust Semisupervised Concept Factorization for Image Representation
    Zhou, Nan
    Chen, Badong
    Du, Yuanhua
    Jiang, Tao
    Liu, Jun
    Xu, Yangyang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3877 - 3891
  • [5] Maximum Correntropy Criterion for Robust Face Recognition
    He, Ran
    Zheng, Wei-Shi
    Hu, Bao-Gang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1561 - 1576
  • [6] A MAXIMUM CORRENTROPY CRITERION FOR ROBUST MULTIDIMENSIONAL SCALING
    Mandanas, Fotios
    Kotropoulos, Constantine
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1906 - 1910
  • [7] A ROBUST MAXIMUM CORRENTROPY CRITERION FOR DICTIONARY LEARNING
    Loza, Carlos A.
    Principe, Jose C.
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [8] New Robust Metric Learning Model Using Maximum Correntropy Criterion
    Xu, Jie
    Luo, Lei
    Deng, Cheng
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2555 - 2564
  • [9] Maximum Correntropy Criterion Based Robust Kalman Filter
    Wang, Liansheng
    Gao, XingWei
    Yin, Lijian
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL III, 2018, 499 : 491 - 500
  • [10] Robust Motion Averaging under Maximum Correntropy Criterion
    Zhu, Jihua
    Hu, Jie
    Lu, Huimin
    Chen, Badong
    Li, Zhongyu
    Li, Yaochen
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5283 - 5288