Robust Tensor Factorization Using Maximum Correntropy Criterion

被引:0
|
作者
Zhang, Miaohua [1 ]
Gao, Yongsheng [1 ]
Sun, Changming [2 ,3 ]
La Salle, John [2 ,3 ]
Liang, Junli [4 ]
机构
[1] Griffith Univ, Sch Engn, Nathan, Qld, Australia
[2] CSIRO Data61, Canberra, ACT, Australia
[3] NRCA, Canberra, ACT, Australia
[4] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracy rate on handwritten digit recognition.
引用
收藏
页码:4184 / 4189
页数:6
相关论文
共 50 条
  • [21] Robust Principal Component Analysis Based on Maximum Correntropy Criterion
    He, Ran
    Hu, Bao-Gang
    Zheng, Wei-Shi
    Kong, Xiang-Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1485 - 1494
  • [22] Robust locality preserving projection based on maximum correntropy criterion
    Zhong, Fujin
    Li, Defang
    Zhang, Jiashu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (07) : 1676 - 1685
  • [23] Robust variable kernel width for maximum correntropy criterion algorithm
    Huang, Wei
    Shan, Haojie
    Xu, Jinshan
    Yao, Xinwei
    SIGNAL PROCESSING, 2021, 182
  • [24] Robust distributed adaptation under arctangent and maximum correntropy criterion
    Wang, Shengwei
    Xu, Yurong
    Ci, Caihong
    Xu, Tianci
    Cui, Shuohao
    Chen, Hongquan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8105 - 8118
  • [25] Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
    Qi, Yu
    Wang, Yueming
    Zhang, Jianmin
    Zhu, Junming
    Zheng, Xiaoxiang
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [26] Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
    Zou, Cuiming
    Kou, Kit Ian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 279 - 289
  • [27] Nonlinearity-Robust Linear Acoustic Echo Canceller Using the Maximum Correntropy Criterion
    Merabti, Hocine
    Massicotte, Daniel
    Zhu, Wei-Ping
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [28] An Accurate and Robust Gaze Estimation Method Based on Maximum Correntropy Criterion
    Yang, Ben
    Zhang, Xuetao
    Li, Zhongchang
    Du, Shaoyi
    Wang, Fei
    IEEE ACCESS, 2019, 7 : 23291 - 23302
  • [29] Robust Ellipse Fitting With Laplacian Kernel Based Maximum Correntropy Criterion
    Hu, Chenlong
    Wang, Gang
    Ho, K. C.
    Liang, Junli
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3127 - 3141
  • [30] Robust Ellipse Fitting Based on Maximum Correntropy Criterion With Variable Center
    Wang, Wei
    Wang, Gang
    Hu, Chenlong
    Ho, K. C.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2520 - 2535