Robust Tensor Factorization Using Maximum Correntropy Criterion

被引:0
|
作者
Zhang, Miaohua [1 ]
Gao, Yongsheng [1 ]
Sun, Changming [2 ,3 ]
La Salle, John [2 ,3 ]
Liang, Junli [4 ]
机构
[1] Griffith Univ, Sch Engn, Nathan, Qld, Australia
[2] CSIRO Data61, Canberra, ACT, Australia
[3] NRCA, Canberra, ACT, Australia
[4] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracy rate on handwritten digit recognition.
引用
收藏
页码:4184 / 4189
页数:6
相关论文
共 50 条
  • [31] Robust Proximal Support Vector Regression Based on Maximum Correntropy Criterion
    Wang, Kuaini
    Pei, Huimin
    Ding, Xiaoshuai
    Zhong, Ping
    SCIENTIFIC PROGRAMMING, 2019, 2019
  • [32] ADMM for Maximum Correntropy Criterion
    Zhu, Fei
    Halimi, Abderrahim
    Honeine, Paul
    Chen, Badong
    Zheng, Nanning
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1420 - 1427
  • [33] Diffusion Kalman filter by using maximum correntropy criterion
    Li, Wenling
    Xiong, Kai
    Liu, Yang
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 203 - 208
  • [34] Maximum Correntropy Criterion With Variable Center for Robust Passive Multistatic Localization
    Hu, Keyuan
    Xiong, Wenxin
    He, Jiajun
    Leung, Chi-Sing
    So, Hing Cheung
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1407 - 1411
  • [35] Robust Sparse Channel Estimation Based on Maximum Mixture Correntropy Criterion
    Lu, Mingfei
    Xing, Lei
    Zheng, Nanning
    Chen, Badong
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [36] Robust State Estimation Based on Orthogonal Methods and Maximum Correntropy Criterion
    Freitas, Victor
    Coasta, Antonio Simoes
    Miranda, Vladimiro
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [37] Robust Constrained Generalized Correntropy and Maximum Versoria Criterion Adaptive Filters
    Bhattacharjee, Sankha Subhra
    Shaikh, Mohammed Aasim
    Kumar, Krishna
    George, Nithin V.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 3002 - 3006
  • [38] Robust TDOA localization based on maximum correntropy criterion with variable center
    Wang, Wei
    Wang, Gang
    Ho, K. C.
    Huang, Lei
    SIGNAL PROCESSING, 2023, 205
  • [39] A Robust Generalized Maximum Correntropy Criterion Algorithm for Active Noise Control
    Zhu, Yingying
    Zhao, Haiquan
    IFAC PAPERSONLINE, 2019, 52 (24): : 299 - 303
  • [40] Robust Generalized Maximum Correntropy Criterion Algorithms for Active Noise Control
    Zhu, Yingying
    Zhao, Haiquan
    Zeng, Xiangping
    Chen, Badong
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1282 - 1292