A ROBUST MAXIMUM CORRENTROPY CRITERION FOR DICTIONARY LEARNING

被引:0
|
作者
Loza, Carlos A. [1 ]
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
Correntropy; Dictionary Learning; Half-Quadratic Optimization; Singular Value Decomposition; Sparse Modeling; SIGNAL RECOVERY; SPARSE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a method that incorporates robustness to one of the main building blocks of sparse modeling: dictionary learning. Particularly, we exploit correntropy to compute the principal components in cases where outliers might be detrimental without proper care. This is further added to one of the most utilized dictionary learning tools: K-SVD; the result is Correntropy K-SVD, or CK-SVD, a method that is based on a Maximum Correntropy Criterion (MCC) instead of the somewhat limited Minimum Squared Error (MSE) approach. The optimization is performed using the well-known Half-Quadratic (HQ) technique, which allows a fast and efficient implementation. The results show the importance of this work not only by outperforming K-SVD, but also by circumventing one of the main assumptions during learning overcomplete representations: the availability of untampered, noiseless and outlier-free samples for training stages.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] MAXIMUM CORRENTROPY CRITERION FOR DISCRIMINATIVE DICTIONARY LEARNING
    Hao, Pengyi
    Kamata, Sei-ichiro
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4325 - 4329
  • [2] ROBUST FEATURE LEARNING BY STACKED AUTOENCODER WITH MAXIMUM CORRENTROPY CRITERION
    Qi, Yu
    Wang, Yueming
    Zheng, Xiaoxiang
    Wu, Zhaohui
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] New Robust Metric Learning Model Using Maximum Correntropy Criterion
    Xu, Jie
    Luo, Lei
    Deng, Cheng
    Huang, Heng
    [J]. KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2555 - 2564
  • [4] A MAXIMUM CORRENTROPY CRITERION FOR ROBUST MULTIDIMENSIONAL SCALING
    Mandanas, Fotios
    Kotropoulos, Constantine
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1906 - 1910
  • [5] Maximum Correntropy Criterion for Robust Face Recognition
    He, Ran
    Zheng, Wei-Shi
    Hu, Bao-Gang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1561 - 1576
  • [6] Robust Motion Averaging under Maximum Correntropy Criterion
    Zhu, Jihua
    Hu, Jie
    Lu, Huimin
    Chen, Badong
    Li, Zhongyu
    Li, Yaochen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5283 - 5288
  • [7] Maximum Correntropy Criterion Based Robust Kalman Filter
    Wang, Liansheng
    Gao, XingWei
    Yin, Lijian
    [J]. CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL III, 2018, 499 : 491 - 500
  • [8] Robust Tensor Factorization Using Maximum Correntropy Criterion
    Zhang, Miaohua
    Gao, Yongsheng
    Sun, Changming
    La Salle, John
    Liang, Junli
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 4184 - 4189
  • [9] Robust Information Filter Based on Maximum Correntropy Criterion
    Wang, Yidi
    Zheng, Wei
    Sun, Shouming
    Li, Li
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (05) : 1124 - +
  • [10] Robust Multidimensional Scaling Using a Maximum Correntropy Criterion
    Mandanas, Fotios D.
    Kotropoulos, Constantine L.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 919 - 932