ROBUST FEATURE LEARNING BY STACKED AUTOENCODER WITH MAXIMUM CORRENTROPY CRITERION

被引:0
|
作者
Qi, Yu [1 ]
Wang, Yueming [1 ]
Zheng, Xiaoxiang [1 ]
Wu, Zhaohui
机构
[1] Zhejiang Univ, Qiushi Acad Adv Studies, Hangzhou 310003, Zhejiang, Peoples R China
关键词
Unsupervised feature learning; stacked autoencoder; correntropy; deep learning;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Unsupervised feature learning with deep networks has been widely studied in the recent years. Despite the progress, most existing models would be fragile to non-Gaussian noises and outliers due to the criterion of mean square error (MSE). In this paper, we propose a robust stacked autoencoder (R-SAE) based on maximum correntropy criterion (MCC) to deal with the data containing non-Gaussian noises and outliers. By replacing MSE with MCC, the anti-noise ability of stacked autoencoder is improved. The proposed method is evaluated using the MNIST benchmark dataset. Experimental results show that, compared with the ordinary stacked autoencoder, the R-SAE improves classification accuracy by 14% and reduces the reconstruction error by 39%, which demonstrates that R-SAE is capable of learning robust features on noisy data.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effective Insect Recognition Using a Stacked Autoencoder with Maximum Correntropy Criterion
    Qi, Yu
    Cinar, Goktug T.
    Souza, Vinicius M. A.
    Batista, Gustavo E. A. P. A.
    Wang, Yueming
    Principe, Jose C.
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [2] A ROBUST MAXIMUM CORRENTROPY CRITERION FOR DICTIONARY LEARNING
    Loza, Carlos A.
    Principe, Jose C.
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [3] New Robust Metric Learning Model Using Maximum Correntropy Criterion
    Xu, Jie
    Luo, Lei
    Deng, Cheng
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2555 - 2564
  • [4] Maximum Correntropy Criterion for Robust Face Recognition
    He, Ran
    Zheng, Wei-Shi
    Hu, Bao-Gang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1561 - 1576
  • [5] A MAXIMUM CORRENTROPY CRITERION FOR ROBUST MULTIDIMENSIONAL SCALING
    Mandanas, Fotios
    Kotropoulos, Constantine
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1906 - 1910
  • [6] Maximum Correntropy Criterion Based Robust Kalman Filter
    Wang, Liansheng
    Gao, XingWei
    Yin, Lijian
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL III, 2018, 499 : 491 - 500
  • [7] Robust Motion Averaging under Maximum Correntropy Criterion
    Zhu, Jihua
    Hu, Jie
    Lu, Huimin
    Chen, Badong
    Li, Zhongyu
    Li, Yaochen
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5283 - 5288
  • [8] MAXIMUM CORRENTROPY CRITERION FOR DISCRIMINATIVE DICTIONARY LEARNING
    Hao, Pengyi
    Kamata, Sei-ichiro
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4325 - 4329
  • [9] Robust Multidimensional Scaling Using a Maximum Correntropy Criterion
    Mandanas, Fotios D.
    Kotropoulos, Constantine L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 919 - 932
  • [10] Augmented Maximum Correntropy Criterion for Robust Geometric Perception
    Li, Jiayuan
    Hu, Qingwu
    Liu, Xinyi
    Zhang, Yongjun
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 4705 - 4724