Predictive control for adaptive optics using neural networks

被引:26
|
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Enabling adaptive pedestals in predictive transport simulations using neural networks
    Gillgren, A.
    Fransson, E.
    Yadykin, D.
    Frassinetti, L.
    Strand, P.
    NUCLEAR FUSION, 2022, 62 (09)
  • [42] Sky implementation of modal predictive control in adaptive optics
    Dessenne, C
    Madec, PY
    Rousset, G
    OPTICS LETTERS, 1999, 24 (05) : 339 - 341
  • [43] Adaptive control of nonlinear dynamic systems using θ-adaptive neural networks
    Yu, SH
    Annaswamy, AM
    AUTOMATICA, 1997, 33 (11) : 1975 - 1995
  • [44] Fast algorithm for adaptive generalized predictive control based on BP neural networks
    Li, QA
    Wang, SQ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 738 - 743
  • [45] Neural networks and multiple models based nonlinear adaptive generalized predictive control
    Shi, Yu-Jing
    Chai, Tian-You
    Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (05): : 540 - 545
  • [46] Multivariable predictive control of a pressurized tank using neural networks
    Duarte-Mermoud, MA
    Suárez, AM
    Bassi, DF
    NEURAL COMPUTING & APPLICATIONS, 2006, 15 (01): : 18 - 25
  • [47] PREDICTIVE CONTROL USING RECURRENT NEURAL NETWORKS FOR INDUSTRIAL PROCESSES
    Lu, Chi-Huang
    Tsai, Ching-Chih
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2009, 32 (02) : 277 - 283
  • [48] Predictive control of aluminum electrolytic cells using neural networks
    Meghlaoui, A
    Bui, RT
    Thibault, J
    Tikasz, L
    Santerre, R
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1998, 29 (05): : 1007 - 1019
  • [49] Intelligent predictive control of nonlinear processes using neural networks
    Norgaard, M
    Sorensen, PH
    Poulsen, NK
    Ravn, O
    Hansen, LK
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1996, : 301 - 306
  • [50] Multivariable predictive control of a pressurized tank using neural networks
    Manuel A. Duarte-Mermoud
    Alejandro M. Suárez
    Danilo F. Bassi
    Neural Computing & Applications, 2006, 15 : 18 - 25