Predictive control for adaptive optics using neural networks

被引:26
|
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Active adaptive combustion control using neural networks
    Blonbou, R
    Laverdant, A
    Zaleski, S
    Kuentzmann, P
    COMBUSTION SCIENCE AND TECHNOLOGY, 2000, 156 (1-6) : 25 - 47
  • [32] Adaptive control of electric drives using neural networks
    Lim, CM
    Ouyang, YZ
    Ouyang, YK
    Lee, TH
    1997 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1997, : 451 - 454
  • [33] Adaptive control of recurrent neural networks using conceptors
    Pourcel, Guillaume
    Goldmann, Mirko
    Fischer, Ingo
    Soriano, Miguel C.
    CHAOS, 2024, 34 (10)
  • [34] Adaptive Control of Underactuated Systems using Neural Networks
    Chaudhari, Aditya
    Kar, Indrani
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 22 - 27
  • [35] Adaptive control of system with hysteresis using neural networks
    Li Chuntao1 & Tan Yonghong2 1. Coll. of Automation
    2. Lab of Intelligent Systems and Control Engineering
    Journal of Systems Engineering and Electronics, 2006, (01) : 163 - 167
  • [36] Adaptive control of mechanical systems using neural networks
    Huang, Sunan
    Tan, Kok Kiong
    Lee, Tong Heng
    Putra, Andi Sudjana
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (05): : 897 - 903
  • [37] Using adaptive recurrent neural networks for chaos control
    Sanchez, EN
    Ricalde, LJ
    Perez, JP
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 915 - 928
  • [38] Adaptive control of smart structures using neural networks
    Rao, Vittal
    Damle, Rajendra
    Tebbe, Chris
    Kern, Frank
    Smart Materials and Structures, 1994, 3 (03) : 354 - 366
  • [39] Adaptive control of neutralization process using neural networks
    Balasubramanian, G.
    Sivakumaran, N.
    Radhakrishnan, T. K.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2008, 36 (02) : 146 - 160
  • [40] Using neural networks for adaptive control of thermal process
    Veleba, V.
    Pivonka, P.
    ANNALS OF DAAAM FOR 2004 & PROCEEDINGS OF THE 15TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 471 - 472