Predictive control for adaptive optics using neural networks

被引:26
|
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Deblurring adaptive optics retinal images using deep convolutional neural networks
    Fei, Xiao
    Zhao, Junlei
    Zhao, Haoxin
    Yun, Dai
    Zhang, Yudong
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (12): : 5675 - 5687
  • [22] ADAPTIVE-CONTROL OF A ROBOT USING NEURAL NETWORKS
    PHAM, DT
    OH, SJ
    ROBOTICA, 1994, 12 : 553 - 561
  • [23] Nonlinear adaptive flight control using neural networks
    Calise, AJ
    Rysdyk, RT
    IEEE CONTROL SYSTEMS MAGAZINE, 1998, 18 (06): : 14 - 25
  • [24] Robust adaptive control using neural networks and projection
    Yu, W
    Li, XO
    ADVANCES IN DYNAMICS, INSTRUMENTATION AND CONTROL, 2004, : 178 - 187
  • [25] Robust adaptive control using neural networks and projection
    Li, XO
    Yu, W
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2, 2004, 3174 : 77 - 82
  • [26] Adaptive attitude control of spacecraft using neural networks
    Leeghim, Henzeh
    Choi, Yoonhyuk
    Bang, Hyochoong
    ACTA ASTRONAUTICA, 2009, 64 (7-8) : 778 - 786
  • [27] ADAPTIVE MANIPULATOR TRAJECTORY CONTROL USING NEURAL NETWORKS
    BEHERA, L
    GOPAL, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1994, 25 (08) : 1249 - 1265
  • [28] Adaptive observer backstepping control using neural networks
    Choi, JY
    Farrell, JA
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (05): : 1103 - 1112
  • [29] Robust nonlinear adaptive control using neural networks
    Adetona, O
    Sathananthan, S
    Keel, LH
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 3884 - 3889
  • [30] Adaptive control using neural networks and approximate models
    Narendra, KS
    Mukhopadhyay, S
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 475 - 485