Predictive control for adaptive optics using neural networks

被引:26
|
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Neural Networks Predictive Control using an Adaptive Control Rate
    Mnasser, Ahmed
    Bouani, Faouzi
    Ksouri, Mekki
    2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 549 - 554
  • [2] Closed loop predictive control of adaptive optics systems with convolutional neural networks
    Swanson, Robin
    Lamb, Masen
    Correia, Carlos M.
    Sivanandam, Suresh
    Kutulakos, Kiriakos
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 2944 - 2954
  • [3] Neural Networks Predictive Controller Using an Adaptive Control Rate
    Mnasser, Ahmed
    Bouani, Faouzi
    Ksouri, Mekki
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2014, 3 (03) : 127 - 147
  • [4] Predictive Control Using Neural Networks
    Kara, Kamel
    Hadjili, Mohamed Laid
    Hemsas, Kamel Eddine
    Missoum, Tedjeddine
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1589 - +
  • [5] Satellite orbits control using Adaptive Neural Networks Predictive Controllers (ANNPC)
    Aly, AF
    Aly, MN
    Zayan, MA
    2003 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-8, 2003, : 2671 - 2690
  • [6] Nonlinear model identification and adaptive model predictive control using neural networks
    Akpan, Vincent A.
    Hassapis, George D.
    ISA TRANSACTIONS, 2011, 50 (02) : 177 - 194
  • [7] Model Predictive Control Using Neural Networks
    Draeger, Andreas
    Engell, Sebastian
    Ranke, Horst
    IEEE CONTROL SYSTEMS MAGAZINE, 2020, 40 (05): : 11 - 12
  • [8] Predictive control using adaline neural networks
    Samek, D.
    Dostal, P.
    Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 405 - 406
  • [9] Neural Networks Predictive Control Using AEPSO
    Hou Zhixiang
    Chen Hui
    Li Heqing
    Proceedings of the 27th Chinese Control Conference, Vol 2, 2008, : 180 - 183
  • [10] Model Predictive Control Using Neural Networks
    Draeger A.
    Engell S.
    Ranke H.
    IEEE Control Systems, 2020, 40 (05) : 11